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Abstract. We consider an infinite family of trace maps αn and their action

on R3. Trace maps fix certain invariant surfaces, and in an earlier paper we

found that the fixed points for αn on one such surface were joined in pairs by
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§1 Introduction

We are studying a family αn of maps from a 3-ball T ⊂ R3 to itself and how a
disc P in a plane of symmetry of T meets its image (P)αn. In [HM] we found the
pattern of curves of fixed points of αn and Figure 2 shows those in P. A certain
toral automorphism reveals how (∂P)αn winds back and forth in ∂T , and, in this
paper, we discover how ∂P ∩ (∂P)αn determines the curves of period 2 points in
P, some of which are shown in Figure 1.

Let us now describe the situation more formally. Given A,B ∈ SL(2,R), the map
(A,B) 7→ (trace(A), trace(B), trace(AB)) can be used to associate a polynomial
diffeomorphism of R3 to each automorphism of the (non-abelian) free group of
rank 2. These diffeomorphisms are called trace maps and have been widely studied,
see [Cas, Can, RB1, RB2, ABG, Ig, BR, LW, PWW]. Each trace map gives a
1-parameter family of area preserving maps of certain level surfaces that foliate
R3. The restriction to one special surface ∂T (where T is a 3-ball) is covered by a
well-understood linear action on the 2-torus, and the set of periodic points is dense
there. In [HM] we defined a family of trace maps and determined their curves of
fixed points. For each trace map αn in our family, we determined pairs of fixed
points in the surface ∂T that are dual in the sense of being connected by a curve
of fixed points of αn. This gave a duality for all fixed points of αn on ∂T .

In this paper we shall study, for αn in the same family of trace maps, all those
points of period 2 that lie in the planes of symmetry x = ±y of R3 (in §7), and then
some of the points of period 2 that are not in these planes (in §8). In Theorem 7.5
we determine the duality of points in the plane x = y (or x = −y) and the pattern
of the curves of points of period 2 joining them (which, according to §5, also lie in
that plane, so we are studying the intersection of that plane and its image). This
will involve a study of multiplication modulo 1 by n+1 and by n−1 in the interval
[0, 1] partitioned into 2n equal subintervals. In Theorem 8.13 we look at period 2
points not in these planes; this involves computations with Chebyshev polynomials.
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As can be seen in Figure 1, the curves of period 2 points in the x = ±y planes
mostly lie in corridors separated by vertical lines; one curve that crosses such a
vertical line forms with that line a lower triangle that encloses curves that we
shall call stalagmites and an upper triangle that encloses curves that we shall call
stalactites, while other curves not thus enclosed reach from top to bottom (and
we shall call them columns). It is this pattern and the duality that it determines
that we shall explore in §§2-7 of this paper. We introduce our family of trace maps
in §2 and their curves of fixed points in §3, see Figure 2, while the properties of
Chebyshev polynomials needed are collected in §4. General properties of the curves
of period two points in the plane x = y are developed in §5 and the curves that
are symmetric (in the sense that they are symmetric to their image, see Figure 3)
are studied in §6. In §7 we study which corridor contains the image of each period
two point from ∂T in a given corridor to determine which pairs of these points
are dual. Finally, in §8 we study various curves of period 2 and 4 points that are
given by equations involving Chebyshev polynomials of the second kind. Duality is
determined for such curves also.

§2 Preliminaries

In this section we will describe general trace maps, some of their properties, and
the family of trace maps that we study.

Let F2 = 〈x1, x2〉 be a free group of rank 2 and let σi ∈ Aut(F2), i = 1, 2, be
defined by

σ1(x1) = x1x2, σ1(x2) = x2;

σ2(x1) = x1, σ2(x2) = x−11 x2.

One can show that σ1, σ2 satisfy the braid relation σ1σ2σ1 = σ2σ1σ2. We thus
have a representation of the braid group B3 [Bi]. Note [MKS, Theorem 3.9] that
any element of Aut(F2) fixes the commutator x1x2x

−1
1 x−12 (up to conjugacy).

Now suppose that the xi, i = 1, 2, are represented by elements of SL(2,C), that
we also denote by xi. Let

x = trace(x1)/2, y = trace(x2)/2, z = trace(x1x2)/2.

Recall the standard trace identities for such 2× 2 matrices:

trace(A−1) = trace(A), trace(I2) = 2,

trace(AB) = trace(A)trace(B)− trace(AB−1).

Using these relations one can prove the well-known fact that if w is a word in
x1, x2, x

−1
1 , x−12 , then trace(w) is an integer polynomial in x, y, z. Thus we obtain

the following induced action of σ1, σ2 on Q[x, y, z]:

σ1(x, y, z) = (z, y, 2yz − x)

σ2(x, y, z) = (x, 2xy − z, y).(2.1)

Now because this action is obtained using the action on traces one should expect
that this only guarantees an action of B3 if we consider the action on the trace ring
[Ma], this being the quotient of Q[x, y, z] by all generic trace relations. In terms of
the generators x, y, z this is the quotient of Q[x, y, z] by the ideal generated by the
element E − 1 where
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Figure 1. Period 2 curves in two corridors for α12.

E = E(x, y, z) = x2 + y2 + z2 − 2xyz,(2.2)
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the element E − 1 being the trace of the element x1x2x
−1
1 x−12 (which, as we noted

above, is Aut(F2)-invariant, up to conjugacy). However this turns out to be un-
necessary as the action of σ1, σ2 on Q[x, y, z] is actually a representation of B3 in
Aut(Q[x, y, z]). This result is related to the fact that for any n > 1 the braid group
Bn [Bi] acts on a polynomial algebra with kernel the centre of Bn [Ma].

In general any automorphism φ : F2 → F2 will give rise to an automorphism of
the trace ring and so determine an invertible map R3 → R3. Such maps are called
trace maps and have been studied by various authors [RB1, RB2, ABG, Ig, BR,
LW, PWW]. For example in [RB1] the map (x, y, z) 7→ (y, z, 2yz − x) is studied,
and information is given about curves of fixed points and period doubling.

The action (2.1) of B3 on Q[x, y, z] gives rise to an action of B3 on R3 if we
think of x, y, z as being the usual coordinate functions for R3. We will write this
action of α ∈ B3 on (a, b, c) ∈ R3 on the right: (a, b, c)α; this action is also the
corresponding action by Nielsen transformations [MKS].

One checks that the action of B3 fixes the function E = E(x, y, z) of (2.2) and
so each level set

Et = {(a, b, c) ∈ R3|E(a, b, c) = t}

is invariant under the action. The level set E1 is distinguished and has been drawn
by many authors [Go, RB1, RB2]. The set

V = {(1, 1, 1), (−1,−1, 1), (−1, 1,−1), (1,−1,−1)} ⊂ E1

consists of the four singular points of E. Further, the six line segments joining these
points are contained in E1 and there is a unique component of E1 \V whose closure
is compact. In fact this closure is a topological 2-sphere that separates R3 into two
components, the closure of one of these components is a 3-ball T that we call a
“curvilinear tetrahedron”. One can check that T ⊂ [−1, 1]3 and that T ∩ ∂[−1, 1]3

is the above mentioned set of six line segments.
In [HM] we studied the fixed points of the diffeomorphisms

αn = σn1 σ
n
2 : R3 → R3, n > 0, 4|n.

We were especially interested in those fixed points which lie on ∂T . For n even these
fixed points include the points V . If we ignore the points of V for the moment, then,
as pointed out in [RB1, p. 839], a consequence of the implicit function theorem is
that the fixed points of αn on ∂T will belong to curves of fixed points. In [HM] we
described the fixed points on ∂T ; we then found the curves of fixed points which
contain them and discovered which pairs of fixed points on ∂T are joined by these
curves. We said that such a pair of fixed points is αn-dual.

Let T 2 = R2/Z2 denote the 2-torus. Then the open two-manifold ∂T \ V is
covered by the restriction of the map

Π : T 2 → ∂T , (θ1, θ2) 7→ (cos(2πθ1), cos(2πθ2), cos(2π(θ1 + θ2))).

Note that Π(θ1, θ2) = Π(−(θ1, θ2)). The map Π is a branched double cover,
branched over the four points V.

The action of B3 on ∂T actually comes from an action of B3 on T 2, the action
being determined by the homomorphism

Φ : B3 → SL(2,Z), σ1 7→
(

1 1
0 1

)
; σ2 7→

(
1 0
−1 1

)
.
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For α ∈ B3, θ =

(
θ1
θ2

)
∈ T 2 the maps Π,Φ are related as follows [HM]:

(Πθ)α = Π(Φ(α)(θ)).(2.3)

The fixed points of α on ∂T \ V are of two types. First note that if Π(θ) ∈
∂T \ V ⊂ R3 is fixed by α, then by (2.3) we must have Φ(α)(θ) = ±θ. A fixed
point Π(θ) is called α-preserving, or just preserving if α is understood, if we have
Φ(α)(θ) = θ; otherwise it is called reversing.

§3 Curves of fixed points

In this section we recall the results of [HM] that describe the curves of fixed
points for αn.

The fixed points on ∂T and the fixed curves that contain them were shown to
be in three families:
(F1) straight line curves;
(F2) curves in the planes x = ±y;
(F3) curves not meeting the planes x = ±y;

We now say a little about each of these cases:
(F1) The straight line cases. For N ∈ N let KN ⊂ SL(2,Z) denote the

congruence N subgroup of SL(2,Z), namely the kernel of the homomorphism
SL(2,Z) → SL(2,Z/NZ). Note that Φ(αn) = Φ(σn1 σ

n
2 ) ∈ Kn. For k,m ∈ Z

and any β ∈ B3 such that Φ(β) ∈ Kn it follows that any point Π(k/n,m/n) is a
preserving fixed point of β. In particular, this is the case for αn.

Now we showed [HM, Lemma 2.3] that for most integer values of k,m, n the
vertical line

(cos(2πk/n), cos(2πm/n), z)

is a line of fixed points for αn which contains Π(k/n,m/n) and is not tangential
to ∂T there. Thus this line meets ∂T at another point, which happens to be
Π(k/n,−m/n). Thus Π(k/n,m/n) and Π(k/n,−m/n) are αn-dual.

Let X,Y, Z ⊂ R3 denote the x-axis, the y-axis and the z-axis. Now it is easily
checked that any point p ∈ X ∪ Y ∪ Z is fixed by each σ4

i , i = 1, 2. Thus if n is a
multiple of 4, then each of X,Y, Z is a line of fixed points for αn which intersects
∂T in αn-dual points (±1, 0, 0), (0,±1, 0), (0, 0,±1).

(F2) The x = ±y cases. We now consider the fixed points p = (a, b, c) ∈ ∂T
where a = ±b. The two cases are similar and so we only describe the a = b case.
(In fact the map (x, y, z) 7→ (−x, y,−z) is centralised by αn when n is even; see
Lemma 4.4 below).

First note that some of the straight line curves of type (F1) are in these planes.
The intersection of T and the plane x = y is a topological disc, denoted by P, in
the x = y plane bounded by the line z = 1 and the parabola z = 2x2 − 1. In this
case we showed that any such fixed point (if it is not on a vertical line of fixed
points as in case (F1)) is on a curve with equation

γ+(x) = (x, x, x(1 + Un−2(x))/Un−1(x)).

Here Uk(x) is the Chebyshev polynomial of the second kind.
We draw these curves as they lie in P in Figure 2 for the case n = 20; we

have shown the components of the curve γ+(x) as a solid curve and we have also
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indicated some dashed vertical lines of fixed points of type (F1) described above.
We also indicate some solid vertical lines that are symmetric (see §5).
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Figure 2. Curves of fixed points in P for α20;
dashed vertical lines are also fixed. Solid vertical lines are symmetric lines for α20.

(F3) Curves not meeting the planes x = ±y. We showed [HM, §§5,6] that
all curves of fixed points which are not completely contained in the planes x = ±y
are determined by a single polynomial Kn(x, y). Further any such curve can only
intersect the planes x = ±y at fixed points of type (F1) or type (F2) and these are
bifurcation points. A type (F3) curve is such a curve that does not intersect the
planes x = ±y at all. These will not be relevant to us in this paper.

§4 Chebyshev polynomials and the action of αn

Define the Chebyshev polynomials Un(x) of the second kind [Ri] by

U−1(x) = 0; U0(x) = 1; U1(x) = 2x; Un(x) = 2xUn−1(x)− Un−2(x).(4.1)

We will often need the following properties of these Chebyshev polynomials:

Lemma 4.1. [HM, Proposition 2.6] For m ∈ N we have
(i) Um(−x) = (−1)mUm(x).
(ii) Um(1) = m+ 1.
(iii) U ′2m(0) = 0;
(iv) U ′2m+1(0) = (−1)m2(m+ 1).
(v) Um(−1) = (−1)m(m+ 1).
(vi) U2

m−1(x)− Um(x)Um−2(x) = 1.
(vii) U2

m(x)− 2xUm−1(x)Um(x) + U2
m−1(x) = 1.

(viii) U2m(x) = U2
m(x)− U2

m−1(x).
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(ix) U2m−1(x) = 2Um(x)Um−1(x)− 2xU2
m−1(x).

(x) For all even n > 1 we have gcd(1 + Un−2(x), Un−1(x)) = Un/2−1(x).

(xi) U ′m(1) = 2
(
m+2
3

)
.

The Chebyshev polynomials of the first kind are defined as follows:

T−1(x) = 0; T0(x) = 1; T1(x) = x; Tn(x) = 2xTn−1(x)− Tn−2(x).

Lemma 4.2. [Ri] U ′n(x) = (n+1)Tn+1(x)−xUn(x)
x2−1 .

Lemma 4.3. [HM, Lemma 2.1] If k ∈ Z, then 0 0 1
0 1 0
−1 0 2y

k x
y
z

 =

 x
y
z

σk1 ;

 1 0 0
0 2x −1
0 1 0

k x
y
z

 =

 x
y
z

σk2 .

Denote the two matrices above by N1 = N1(y), N2 = N2(x). Then we have:

Nk
1 =

 −Uk−2(y) 0 Uk−1(y)
0 1 0

−Uk−1(y) 0 Uk(y)

 ;

Nk
2 =

 1 0 0
0 Uk(x) −Uk−1(x)
0 Uk−1(x) −Uk−2(x)

 .

Lemma 4.4. [HM, Proposition 2.5] (i) The involutive automorphism

S : Q[x, y, z]→ Q[x, y, z], (x, y, z) 7→ (−x, y,−z)
centralises any α ∈ 〈σ1, σ2

2〉, that is αS = Sα. In particular, if n is even, then S
centralises αn.

(ii) The involutive automorphism

R : Q[x, y, z]→ Q[x, y, z], (x, y, z) 7→ (y, x, z)

conjugates σ1 to σ−12 . The map R reverse centralises αn so that αnR = Rα−1n .
(iii) The involutive automorphism

T = (SR)2 : Q[x, y, z]→ Q[x, y, z], (x, y, z) 7→ (−x,−y, z)
commutes with σ2

1 and with σ2
2. In particular, if n is even, then T centralises αn.

We note that the involution S maps the x = y plane bijectively onto the x = −y
plane. Lemma 4.4 (i) thus determines a correspondence between fixed and period
2 points in the respective planes. Thus it suffices for us to study P. Also Lemma
4.4 (iii) shows that the fixed and period 2 points in P are symmetric relative to Z,
as seen in Figure 2.

Lemma 4.5. [HM, Corollary 2.2] For all n ∈ N and (x, y, z)T ∈ R3 we have: x
y
z

αn =

 −xUn−2(y) + zUn−1(y)
Un(x∗)y − Un−1(x∗)[−xUn−1(y) + zUn(y)]
Un−1(x∗)y − Un−2(x∗)[−xUn−1(y) + zUn(y)]

 .

Here x∗ = −xUn−2(y) + zUn−1(y).
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In particular, if (x, y, z)T ∈ R3 is a fixed point of αn and Un−1(y) 6= 0, then we
must have

z = x(1 + Un−2(y))/Un−1(y).

Lemma 4.6. The point (x, x, x2), where x = cos 2πj
n is on the curve γ+(t) =

(t, t, t(1+Un−2(t))
Un−1(t)

) of fixed points for αn.

Proof In [HM, Lemma 3.2 (i)] we showed that γ+(t) is a curve of fixed points for
αn.

Let x = cos 2πj
n . We need to show that x(1+Un−2(x))

Un−1(x)
= x2. Now Un−1(x) =

sinn 2πj
n

sin 2πj
n

= 0, and Un−2(x) =
sin(n−1) 2πj

n

sin 2πj
n

= −1. Further, Tn(x) = cosn 2πj
n = 1, and

Tn−1(x) = cos(n− 1) 2πj
n = x. Using Lemma 4.2 we obtain

x(1 + Un−2(x))

Un−1(x)
=
x d
dx [1 + Un−2(x))]

d
dxUn−1(x)

=
x[(n− 1)Tn−1(x)− xUn−2(x)]

nTn(x)− xUn−1(x)

=
x[(n− 1)Tn−1(x) + x]

nTn(x)

= x2,

as required. �

§5 General results about curves of period 2 points in P

Theorem 5.1. Let p ∈ P. Then p ∈ P ∩ (P)αn if and only if (p)α2
n = p.

Proof Let p = (x, x, z) ∈ P and assume that p ∈ P ∩ (P)αn From Lemma 4.3 we
have:

(x, x, z)αn = (v1, v2, v3)

= (−xUn−2(x) + zUn−1(x),

Un(x∗)x− Un−1(x∗)(−Un−1(x)x+ zUn(x)),

xUn−1(x∗)− Un−2(x∗)(−Un−1(x)x+ zUn(x))).(5.1)

Here x∗ = v1 = −xUn−2(x) + zUn−1(x). From the same result we also have:

(x, x, z)α−1n = (u1, u2, u3)

= (xUn(x∗)− Un−1(x∗) (−xUn−1(x) + zUn(x)) ,

− xUn−2(x) + zUn−1(x),

xUn−1(x∗)− Un−2(x∗) (−xUn−1(x) + zUn(x))).(5.2)

From p ∈ P ∩ (P)αn we see that (p)α−1n ∈ P. This shows that u1 = u2. But
we have x∗ = v1 = u2, and from (5.1) and (5.2) we see that v2 = u1, so that
u1 = u2 = v1 = v2. It is also clear from (5.1) and (5.2) that u3 = v3, so that
(x, x, z)αn = (x, x, z)α−1n , giving (p)α2

n = p.
Now if (p)α2

n = p for p = (x, x, z) ∈ P, then we have (p)αn = (p)α−1n . Equating
the entries in (5.1) and (5.2) we see that v1 = u1, v2 = u2, v3 = u3, but we also
have v1 = u2, so that u1 = u2 = v1 = v2, showing that (p)αn ∈ P. �



CURVES OF PERIOD TWO POINTS FOR TRACE MAPS 9

Remarks 1. In torus coordinates αn maps ∂P by Mn =

(
1 n
−n 1− n2

)
which

has trace 2−n2 < −2, so each point of (∂P \ V )∩Fix(α2
n) is a hyperbolic periodic

point of αn|∂P and, by the Implicit Function Theorem (as noted in [RB1, p. 839]),
belongs to a smooth curve in Fix(α2

n) that is transverse there to ∂T .
2. Consider G : P → R, G(x, x, z) := v1 − v2 where (x, x, z)αn = (v1, v2, v3).

Then {G = 0} = P ∩ (P)αn. From Algebraic Geometry, see §2.3 of [W], G = 0
on a finite union of curves, each parametrised by a Puiseux series, so P ∩ (P)αn
is certainly a union of smooth curves, possibly with cusps (and there may also be
some isolated points). Now G = 0 at each point p ∈ ∂P ∩ (∂P)αn = ∂P ∩Fix(α2

n).
These points are parametrised by points of the straight line joining (0, 0) to (1, 1)
or (1,−1) that are mapped by Mn to one of these lines (mod Z2), and we note
that the images of these lines do cross the lines there. Thus G|∂P changes sign
at each point of ∂P ∩ (∂P)αn. The component of {G = 0} to which p belongs
must meet ∂P in at least one more point since otherwise it would not be able to
separate the points where G > 0 near p from those where G < 0. We say that p
is dual to q ∈ ∂P ∩ Fix(α2

n) if p and q are endpoints of the intersection with P of
a smooth curve in Fix(α2

n). We shall discover which of the various points of ∂P in
this component p is dual to in Theorem 7.5.

§6 Symmetric curves of period 2 points in P

We call a point (x, x, z) ∈ R3 a symmetric point (for αn) if (x, x, z)αn =
(−x,−x, z). Such a point is a point of period 2 by Lemma 4.4 (iii).

Symmetric points (and curves of such points) are determined in the following
result, which also determines duality for symmetric points.

Proposition 6.1. (i) The curve γ−(x) =
(
x, x, xU2n−2(x)

U2n−1(x)

)
is fixed by α2

4n.

(ii) The vertical line (x, x, z), x = cos kπ4n , is also fixed by α2
4n when k is odd.

(iii) The curves in (i) and (ii) are exactly the symmetric curves.
(iv) The symmetric curves γ−(x) meet P in components that intersect ∂T when-

ever x = cos 2πθ, where

θ =
k

2(4n− 2)
and θ =

k

2(4n+ 2)
for k odd.

The points with denominator 2(4n− 2) are on ∂+P, while the points with denomi-
nator 2(4n+ 2) are on ∂−P. See Figure 3.

(v) For each odd k, the curve γ−(x) joining the points of ∂P where θ = k
2(4n−2)

and θ = k
2(4n+2) , meets the given vertical line (see (ii) above) at (x, x, x2), x =

cos 2kπ
8n . This is the point on the line where E = x2 + x2 + z2 − 2x2z takes its

minimum value.

Proof Let Uk = Uk(x).
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(i) Now α4n = σ4n
1 σ4n

2 and so by Lemma 4.3 we have

(x, x,
xU2n−2

U2n−1
)Tσ4n

1 =

 −U4n−2 0 U4n−1
0 1 0

−U4n−1 0 U4n

 x
x

xU2n−2

U2n−1


=

 −xU4n−2 + xU2n−2U4n−1

U2n−1

x

−xU4n−1 + xU2n−2U4n

U2n−1

 .(6.1)

Before proceeding to the action of σ4n
2 we simplify (6.1). For the first entry of (6.1)

we have, using Lemma 4.1 :

−xU4n−2+
xU2n−2U4n−1

U2n−1
=
−xU4n−2U2n−1 + xU2n−2U4n−1

U2n−1

=
−xU2n−1(U2

2n−1 − U2
2n−2) + xU2n−2(2U2nU2n−1 − 2xU2

2n−1)

U2n−1

= x(−U2
2n−1 + U2

2n−2 + 2U2nU2n−2 − 2xU2n−1U2n−2)

= x(−U2
2n−1 + U2

2n−2 + 2(2xU2n−1 − U2n−2)U2n−2 − 2xU2n−1U2n−2)

= x(−U2
2n−1 − U2

2n−2 + 2xU2n−1U2n−2)

= −x,

where the last equality is given by Lemma 4.1 (vii).
For the third entry of (6.1) we have:

−xU4n−1 +
xU2n−2U4n

U2n−1
=
−xU4n−1U2n−1 + xU2n−2U4n

U2n−1

=
−x(2U2nU2n−1 − 2xU2

2n−1)U2n−1 + xU2n−2(U2
2n − U2

2n−1)

U2n−1
.

Now substitute U2n = 2xU2n−1−U2n−2 into this and the resulting equation factors:

x(U2n−2 − 2xU2n−1)(U2
2n−1 − 2xU2n−1U2n−2 + U2

2n−2)

U2n−1
.

The last factor of the numerator is 1 by Lemma 4.1 (vii). Thus this expression is

x(U2n−2 − 2xU2n−1)

U2n−1
=
xU2n−2

U2n−1
− 2x2.

Thus (6.1) is equal to  −x
x

xU2n−2

U2n−1
− 2x2

 .

We now act on this by σ4n
2 , again using Lemma 4.3, where we recall that

Uk(−x) = −Uk(x) if k is odd and Uk(−x) = Uk(x) if not:
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 −x
x

xU2n−2

U2n−1
− 2x2

σ4n
2 =

 1 0 0
0 U4n U4n−1
0 −U4n−1 −U4n−2

 −x
x

xU2n−2

U2n−1
− 2x2



=


−x

xU4n + U4n−1

(
xU2n−2

U2n−1
− 2x2

)
−xU4n−1 − U4n−2

(
xU2n−2

U2n−1
− 2x2

)
 .

For the second entry we substitute for U4n, U4n−1 (using Lemma 4.1) and U2n =
2xU2n−1 − U2n−2 and find that the resulting expression becomes:

−x(U2
2n−1 − 2xU2n−1U2n−2 + U2

2n−2) = −x.

Doing the same thing for the third entry we obtain xU2n−2

U2n−1
, so that we now have(

x, x,
xU2n−2(x)

U2n−1(x)

)
σ4n
1 σ4n

2 =

(
−x,−x, xU2n−2(x)

U2n−1(x)

)
.

Since xU2n−2(x)
U2n−1(x)

is an even function, it follows that (σ4n
1 σ4n

2 )2 fixes
(
x, x, xU2n−2(x)

U2n−1(x)

)
and we have proved (i).

(ii) Now, if k is odd and x = cos 2πθ, θ = k
8n , then U4n−1(x) = sin 8nπθ

sin 2πθ = 0. We

also have U4n−2(x) = sin(4n−1)2πθ
sin 2πθ = 1 and U4n(x) = sin(4n+1)θ2π

sin θ2π = −1, so that, by
Lemma 4.3 we have

N4n
1 =

 −1 0 0
0 1 0
0 0 −1

 , N4n
2 =

 1 0 0
0 −1 0
0 0 −1

 ,

so that

N4n
2 N4n

1 =

 −1 0 0
0 −1 0
0 0 1

 .

Thus (x, x, z)α4n = (−x,−x, z) and so

(x, x, z)α2
4n = (x, x, z).

These vertical lines are drawn solid in Figure 2 for n = 20.
(iii) From Lemma 4.5 we see that a symmetric point (x, x, z)T for α4n must

satisfy −x = x∗ = −xU4n−2(x) + zU4n−1(x), so that using Lemma 4.1 we have:

z =
−x(1− U4n−2)

U4n−1

=
−x(1− U2

2n−1 + U2
2n−2)

2U2nU2n−1 − 2xU2
2n−1

=
−x(U2

2n−2 − 2xU2n−1U2n−2 + U2
2n−2)

2U2n−1(U2n − xU2n−1)

=
xU2n−2

U2n−1
.

This shows that a symmetric point with U2n−1(x) 6= 0 must be γ−(x). If U2n−1(x) =
0, then x = cos 2πθ where sin(2n2πθ) = 0; this gives θ = k

4n , however for k even
these vertical lines are fixed, while if k is odd they are symmetric by (ii).
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(iv) Let z = xU2n−2(x)
U2n−1(x)

. Then the expression E(x, x, z)−1 = x2+x2+z2−2x2z−1

factors as
(U2n−1 − xU2n−2)(2x2U2n−1 − U2n−1 − xU2n−2)

U2
2n−1

.

Substituting Uk = sin(k+1)θ2π
sin θ2π (where x = cos θ2π) the first factor reduces to

sin(2nθ2π)− cos θ2π sin(2n− 1)θ2π

sin θ2π
= cos(2n− 1)θ2π.(6.2)

The solutions in this case are θ = k
4(2n−1) , for odd k.

Now when θ = k
4(2n−1) with odd k and x = cos(θ2π), then we have

z(x) =
xU2n−2

U2n−1
=

cos( kπ
2(2n−1) ) sin( (2n−1)kπ

2(2n−1) )

sin( 2nkπ
2(2n−1) )

.

Now if we put θ = k
4(2n−1) into (6.2), then the right hand side is 0 and the left

hand side shows that sin(2nθ2π) − cos θ2π sin(2n − 1)θ2π = 0 and so the above
expression for z(x) is 1. Thus these points are on ∂+P.

Similarly, the second factor is

2 cos2 θ2π sin(2nθ2π)− sin(2nθ2π)− cos(θ2π) sin(2n− 1)θ2π)

sin θ2π

=
2 cos2 θ2π sin(2nθ2π)− sin(2nθ2π)− cos(θ2π)(sin 2nθ2π cos θ2π − sin θ2π cos(2n)θ2π)

sin θ2π

=
sin 2nθ2π − cos θ2π sin θ2π cos(2n)θ2π − cos2 θ2π sin 2nθ2π

sin θ2π

=
sin2 θ2π sin 2nθ2π − cos θ2π sin θ2π cos(2n)θ2π

sin θ2π
= − cos(2n+ 1)θ2π.

The solutions in this case are θ = k
4(2n+1) , for odd k.

One now shows that z(x) = cos(2θ2π) if θ = k
4(2n+1) , for odd k and x = cos θ2π,

so that these points are on ∂−P.
(v) If k is odd and x = cos kπ4n , then

z(x) =
xU2n−2(x)

U2n−1(x)
=

cos kπ4n sin (2n−1)kπ
4n

sin kπ
2

=
cos kπ4n

(
sin kπ

2 cos kπ4n − cos kπ2 sin kπ
4n

)
sin kπ

2

= cos2
kπ

4n
= x2.

That this is the point on the vertical line where x2 + x2 + z2 − 2x2z takes its
minimum value was shown in [HM, Lemma 2.8]. �

From Proposition 6.1 we see that the curve

γ−(x) = (x, x, z), z = z(x) =
xU2n−2(x)

U2n−1(x)
,

is a curve of period two points for α4n that has the property that (x, x, z)α4n =
(−x,−x, z). Thus we have γ−(x)α4n 6= γ−(x), whenever x 6= 0.
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Figure 3. Symmetric curves and fixed curves for α20

We illustrate this in Figure 3 for n = 20. Compare Figure 3 with Figure 2.

Let γ+(x) = (x, x, x(1+U4n−2)
U4n−1

) be the curve of fixed points of α4n, as given in

Lemma 4.6. From the first statement of [HM, Proposition 3.5] we see that the
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points of γ+(x) ∩ ∂P are

cos
kπ

4n+ 2
, for k = 0, 2, 4, . . . , 4n+ 2;

cos
kπ

4n− 2
, for k = 0, 2, 4, . . . , 4n− 2.

It follows that the points of γ−(x)∩ ∂P alternate with the points of γ+(x)∩ ∂P
on each of ∂+P and ∂−P. Since for x 6= 0 the points of γ−(x) are not fixed
and the points of γ+(x) are fixed by α4n we see that the curves γ+(x) and γ−(x)
are disjoint. Now from the above we see that between consecutive fixed curves of
γ+(x) ∩ P there are exactly two points of γ−(x) ∩ ∂P. These thus must be dual
points. This gives most of

Theorem 6.2. For 1 ≤ k ≤ 2n−3 odd, the points with torus coordinates ( k
4n−2 ,−

k
4n−2 )

and ( k
4n+2 ,

k
4n+2 ) are dual symmetric points for α4n.

The points with coordinates ( 2n−1
4n+2 ,

2n−1
4n+2 ) and ( 2n+3

4n+2 ,
2n+3
4n+2 ) are dual symmetric

points for α4n. They are joined by a symmetric curve of points that passes through
the point (0, 0, 1

2n ).

The points with coordinates (1− k
4n−2 ,−1 + k

4n−2 ) and (1− k
4n+2 , 1−

k
4n+2 ) are

dual when 1 ≤ k ≤ 2n− 3 and k is odd.

Proof We need only be concerned about the second paragraph. Clearly these points
are dual. Now the curve γ−(x) goes through the point (0, 0, z0), where

z0 =
d
dxxU2n−2(x)
d
dxU2n−1(x)

=
(U2n−2(x) + x (2n−1)T2n−1(x)−xU2n−2(x)

x2−1 )|x=0

2nT2n(x)−xU2n−1(x)
x2−1 |x=0

.

Letting x go to zero gives U2n−2(0)
−2nT2n(0)

= 1
2n . Here we use that fact that Un(0) =

Tn(0) = (−1)
n
2 if n is even, and Un(0) = Tn(0) = 0 if n is odd. �

We note that this means that the trace of the Jacobian of α4n at the fixed point
(0, 0, z0)T must be 1− 1− 1 = −1.

§7 Duality, Stalagmites, Stalactites and Columns

Our aim in this section is to determine the dual pairing of all the points fixed by
α2
n in ∂P. We emphasize that we will be assuming 4|n. First we collect the results

already proved.

Proposition 7.1. (i) For k even in {1, . . . , n− 1} the vertical line
(cos(2πk/(2n)), cos(2πk/(2n)), z) consists of points fixed by αn.

(ii) For k odd in {1, . . . , n−1} the vertical line (cos(2πk/(2n)), cos(2πk/(2n)), z)
consists of symmetric points fixed by α2

n. Recall that (x, x, z) is called symmetric
if (x, x, z)αn = (−x,−x, z) and then it has period 2 because also (−x,−x, z)αn =
(x, x, z).

(iii) The curve γ+(x) = (x, x, x(1 + Un−2(x))/Un−1(x)) consists of fixed points
and, for k even in {1, . . . , n/2−2}, it joins the dual pair corresponding to the param-
eters k/(2(n+2)) in ∂−P and k/(2(n−2)) in ∂+P and the dual pair corresponding
to the parameters 1/2−k/(2(n+2)) in ∂−P and 1/2−k/(2(n−2)) in ∂+P; it also
joins the dual pair in ∂−P corresponding to the parameters (n/2)/(2(n+2)), (n/2+
2)/(2(n+ 2)) (which are 1/4± 1/(2(n+ 2))).
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(iv) The curve γ−(x) = (x, x, xUn/2−2(x)/Un/2−1(x)) consists of symmetric
points and, for k odd in {1, . . . , n/2 − 2}, it joins the dual pair corresponding to
the parameters k/(2(n + 2)) in ∂−P and k/(2(n − 2)) in ∂+P and their images
which are the dual pair corresponding to the parameters 1/2− k/(2(n+ 2)) in ∂−P
and 1/2− k/(2(n− 2)) in ∂+P; also it joins the dual pair in ∂−P with parameters
(n/2− 1)/(2(n+ 2)) and (n/2 + 3)/(2(n+ 2)) (which are 1/4± 1/(n+ 2)).

Proof (i) was Lemma 2.12 of [HM] and (iii) was Lemma 3.5 of [HM]; (ii) and (iv)
were Proposition 6.1 and Theorem 6.2 above. �

We divide P into n distinct (open) vertical corridors separated by the vertical
lines of fixed and symmetric points of Proposition 7.1 (i) and (ii). For k ∈ Z we
specify the kth corridor by

Ck := {(cos(2πθ), cos(2πθ), z) ∈ P : k/(2n) < θ < (k + 1)/(2n)}

and note that C2n+k = Ck = C−k−1. We let Dk := (k/(2n), (k + 1)/(2n))
parametrise the top and bottom edges

C+
k := Ck ∩ ∂+P, C−k := Ck ∩ ∂−P

of Ck using

θ 7→ (cos(2πθ), cos(−2πθ), 1), (cos(2πθ), cos(2πθ), cos(4πθ)).

By studying which corridor contains the image of a point of period 2 we shall
determine the duality. One point in ∂+P may be dual to another there; then we
call the curve of period 2 points joining them a stalactite. If it is dual to a point
of ∂−P, then we call the curve a column. If one point of ∂−P is dual to another,
then we call such a curve a stalagmite.

We will show that the image under αn of a stalagmite or a stalactite is a column,
and that all columns are either (i) curves of fixed points; (ii) symmetric curves of
period 2; or (iii) have images under αn that are either a stalagmite or a stalactite.

Now αn acts on C+
k and C−k by multiplying the parameter in Dk by (n− 1) and

(n+ 1) respectively, as we see from the first coordinate (or its negative) of(
1 n
−n 1− n2

)(
θ
−θ

)
= −

(
(n− 1)θ

(1 + n− n2)θ

)
,(

1 n
−n 1− n2

)(
θ
θ

)
=

(
(n+ 1)θ

(1− n− n2)θ

)
.

The points of ∂+P ∩ (∂+P)α−1n and ∂+P ∩ (∂−P)α−1n have parameters

{j/(n(n− 2)) : 0 ≤ j ≤ n(n− 2)/2}, {j/(n2 − 2) : 0 ≤ j ≤ (n2 − 2)/2}.

In fact(
1 n
−n 1− n2

)(
j/(n(n− 2))
−j/(n(n− 2))

)
=

(
0
−j

)
+ (1− n)

(
j/(n(n− 2))
−j/(n(n− 2))

)
,

while(
1 n
−n 1− n2

)(
j/(n2 − 2)
−j/(n2 − 2)

)
=

(
0
−j

)
+ (1− n)

(
j/(n2 − 2)
j/(n2 − 2)

)
.

Similarly the points of ∂−P ∩ (∂+P)α−1n and ∂−P ∩ (∂−P)α−1n have parameters

{j/(n2 − 2) : 0 ≤ j ≤ (n2 − 2)/2}, {j/(n(n+ 2)) : 0 ≤ j ≤ n(n+ 2)/2}.



16 STEPHEN P. HUMPHRIES AND ANTHONY MANNING

For 0 ≤ k < n the set of parameters of points in C+
k ∩ (∂+P)α−1n is

{θ++
k,j := (k(n/2− 1) + j)/(n(n− 2)) : 1 ≤ j ≤ n/2− 2},

while the set of parameters of points in C−k ∩ (∂−P)α−1n is

{θ−−k,j := (k(n/2 + 1) + j)/(n(n+ 2)) : 1 ≤ j ≤ n/2}.

Thus θ++
k,j is the parameter of the jth point of C+

k that is mapped by αn from

∂+P to ∂+P. Notice that putting j = 0 or n/2 − 1 in θ++
k,j (or putting j = 0 or

n/2 + 1 in θ−−k,j ) would give a fixed or symmetric point as in Proposition 7.1 (i) or

(ii) and these are in the boundary of the corridor Ck.
Also, for 0 ≤ k < n, the set of parameters of points in C+

k ∩ (∂−P)α−1n is

{θ+−k,j := (kn/2 + j)/(n2 − 2) : 0 ≤ j < n/2},

while the set of parameters of points in C−k ∩ (∂+P)α−1n is similarly

{θ−+k,j := (kn/2 + j)/(n2 − 2) : 0 ≤ j < n/2},

except that we exclude θ+−0,0 = θ−+0,0 = 0 and θ+−n−1,n/2−1 = θ−+n−1,n/2−1 = 1
2 .

Proposition 7.2. If 0 ≤ k < n and k is even then
(i) αn maps the point corresponding to θ++

k,j to a point in C2j−k = Ck−2j−1 for

1 ≤ j ≤ n/2− 2.
(ii) αn maps the point corresponding to θ+−k,j to a point in C2j−k = Ck−2j−1 if

0 ≤ j ≤ k and in C2j−k−1 if k < j < n/2.
(iii) αn maps the point corresponding to θ−+k,j to a point in Ck+2j if 0 ≤ j < n/2−k
and in Ck+2j+1 if n/2− k ≤ j < n/2.
(iv) αn maps the point corresponding to θ−−k,j to a point in Ck+2j−1 for 1 ≤ j ≤ n/2.

(v) If k is odd, then n should be added to the suffix of the image corridor C2j−k etc
in each of cases (i) to (iv).

We remark that, for fixed even k ∈ {0, . . . , n − 1}, the images of the points
θ++
k,j (for 1 ≤ j ≤ n/2 − 2) are equally spaced and so they lie in corridors C2j−k

that (with the initial and final cases of C−k, Cn−k−2) alternate in the sequence
C−k, . . . , C−k+n−2. Notice that, in C0, . . . , Cn−1, the images of our points are in
Cq for q = k − 3, k − 5, . . . , 3, 1, 0, 2, . . . , k − 2, k, . . . , n− k − 4, which means in

(7.1) {C0, C1, . . . , Ck−3, Ck−2, Ck, Ck+2, . . . , Cn−k−6, Cn−k−4}.
However, the equally spaced images of the points θ+−k,j (for 0 ≤ j < n/2) are trans-
lated by a distance that depends on k so they can change from C2j−k to C2j−k−1
as j passes the value k. Thus these images lie in Cq for

q = k − 1, k − 3, . . . , 3, 1, 0, 2, . . . , k − 2, k, k + 1, k + 3, . . . , n− k − 3,

which means in

{C0, C1, . . . , Ck, Ck+1, Ck+3, Ck+5, . . . , Cn−k−5, Cn−k−3}.
Notice that there are two more corridors listed here than in (7.1) because j takes
two more values in θ+−k,j than in θ++

k,j .

Proof We shall study the effect of multiplying by (n− 1) and (n+ 1). For (i)

(n− 1)(k(n/2− 1) + j)/(n(n− 2)) = k/2 + (2j − k)/(2n) + j/(n(n− 2))
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gives a point in C2j−k since, when k is even, k/2 is an integer and has no effect.
For (ii)

(n− 1)(kn/2 + j)/(n2 − 2) = k/2 + [(2j − k)n/2 + (k − j)]/(n2 − 2)

= k/2 + [(2j − k − 1)n/2 + (n/2 + k − j)]/(n2 − 2)

gives a point in C2j−k if k − j ≥ 0 and in C2j−k−1 if k − j < 0. For (iii)

(n+ 1)(kn/2 + j)/(n2 − 2) = k/2 + ((k + 2j)n/2 + k + j)/(n2 − 2)

= k/2 + ((k + 2j + 1)n/2 + (k + j − n/2))/(n2 − 2)

gives a point in Ck+2j if 0 ≤ j < n/2− k and in Ck+2j+1 if n/2− k ≤ j < n/2. For
(iv)

(n+1)(k(n/2+1)+j)/(n(n+2)) = k/2+((k+2j−1)/(2n)+(n/2+1−j))/(n(n+2))

gives a point of Ck+2j−1. For (v) we note that if k is odd then k/2 contributes 1
2 ,

which adds n to the corridor number. �

Now we shall study duality for period 2 points in Ck and we will refer to these
points by their parameter θ++

k,j etc. It will suffice for us to consider the cases

0 ≤ k < n/2 since the duality in Cn/2, . . . , Cn−1 is equivalent to duality in these

corridors under (x, x, z) 7→ (−x,−x, z) or θ 7→ 1
2 − θ. First we discuss when the

curve joining two dual points can cross a vertical line of fixed or symmetric points
because this will guide us on whether a point of Fix(α2

n) ∩ ∂P must be dual to
another in the same corridor.

In this paragraph we assemble information from Proposition 7.1 about various
curves crossing one or more fixed or symmetric vertical lines. Among the points of
period 2 in

⋃n−1
k=0 Ck, we have already seen in Proposition 7.1 (iii) and (iv) that, for

0 ≤ k < n/2− 1 even,

θ++
k,k = k/(2(n− 2)) = (kn/2)/(n(n− 2))

is dual to
θ−−k−1,n/2−k+1 = k/(2(n+ 2)) = (kn/2)/(n(n+ 2))

with both points fixed, that θ++
k+1,k+1 is dual to θ−−k,n/2−k with both points symmet-

ric, and that the fixed or symmetric curve joining these points crosses the fixed
or symmetric (respectively) vertical line at the boundary of Ck. Proposition 7.1
(iii) and (iv) say also that the fixed points θ−−n/2−1,1 and θ−−n/2,n/2 are dual and the

curve of fixed points joining them crosses the fixed vertical line θ = 1/4 (actually
at the origin (x, x, z) = (0, 0, 0)). Moreover the symmetric points θ−−n/2−2,2 and

θ−−n/2+1,n/2−1 are dual and the symmetric curve joining them crosses the fixed ver-

tical line θ = 1/4 and the symmetric vertical lines θ = 1/4 ± 1/(2n). See Figure
3.

Proposition 7.3. The curve of period 2 points joining θ−−n/2−2,2 and θ−−n/2+1,n/2−1
is the only such curve to cross both edges of any corridor.

Proof If any curve in Fix(α2
n) crosses a fixed vertical line at a point r1 and then an

adjacent symmetric vertical line at r2 then its image reaches from r1 to (r2)αn and,
if r1 does not have θ = 1/4, meets at least a fixed and a symmetric vertical line
between these points and then those intersections cannot be the image of points
between r1 and r2. Having θ = 1/4 for r1 is therefore the only way that the
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curve joining two points of period 2 can cross two adjacent vertical lines (the edges
of some corridor). As there is no other symmetric point in C+

n/2−2 ∪ C
−
n/2−2 the

curve joining θ−−n/2−2,2 and θ−−n/2+1,n/2−1 is the only one to cross both edges of any

corridor. �

In the situation n = 12, Figure 4 shows the unique curve of period 2 points that
crosses the two central corridors. This curve crosses the z-axis at approximately
x = ±0.3.

Figure 4. Central corridors for α12.

Proposition 7.4. If 0 < k < n/2, then the only curves of period 2 points that
cross an edge of Ck are:

(i) the curves of fixed or symmetric points in Proposition 7.1 (iii) and (iv), with
the latter including the curve in Proposition 7.3.
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(ii) the curve of period 2 points joining the points corresponding to θ+−k,0 and

θ−+k−1,n/2−k.

Also, the points corresponding to θ+−k,k and θ−+k,0 are dual.

Proof If there is a path in Fix(α2
n) from p ∈ (Fix(α2

n) \ Fix(αn)) ∩ (C+
k ∪ C

−
k )

that meets the fixed vertical edge of Ck first at a point r, say, then αn takes this
part of the curve to a curve from (p)αn to r that does not meet the edge of any
corridor. Assume that k is even. Then (p)αn is in the corridor Ck−1 adjacent to
Ck (or possibly in Ck itself) and, by Proposition 7.2, this happens precisely with
θ+−k,0 mapped to θ−+k−1,n/2−k or with θ+−k,k mapped to θ−+k,0 . Now θ−+k−1,n/2−k must be

dual to θ+−k,0 by a curve that has non-zero algebraic intersection number with the

fixed edge of Ck and is mapped to the reverse of itself. (It could not be dual to
θ+−k,k or θ−+k,0 because the curve joining them would map to a curve joining points

in Ck and so having algebraic intersection number 0 with that fixed edge.) Then
θ+−k,k and θ−+k,0 are dual by a curve that is sent to its reverse. From the order of the

points along ∂P the curve in Fix(α2
n) joining θ+−k,k and θ−+k,0 must cross the curve

in Fix(αn) joining θ++
k,k to θ−−k−1,n/2−k−1 (and then there is a path in Fix(α2

n) from

θ+−k,k or θ−+k,0 to the fixed edge following part of its curve and then part of that curve

of fixed points).
If k is odd a similar discussion shows that θ+−k,0 , θ

−+
k−1,n/2−k and θ+−k,k , θ

−+
k,0 are dual

pairs connected in Fix(α2
n) to the symmetric edge of Ck and the curve joining each

of these pairs is mapped to the curve symmetric to it. �

Figure 1 shows the three curves described here joining the points corresponding
to θ++

k,k and θ−−k−1,n/2−k+1, θ+−k,0 and θ−+k−1,n/2−k, and θ+−k,k and θ−+k,0 (for k = n/2 −
2, n = 12). They are the two curves that cross the central vertical line and the one
that crosses the lower of these two.

Now we can complete the determination of the dual pairing.

Theorem 7.5. Fix k in {0, . . . , n/2− 1}.
(i) For 0 < j < k, θ++

k,j is dual to θ+−k,j . These pairs give k − 1 stalactites and they
are mapped to columns.
(ii) For k < j ≤ n/2 − 2, θ++

k,j is dual to θ−+k,j−k. These pairs give n/2 − k − 2
columns that map to stalactites.
(iii) For 0 < j < n/2 − k, θ−−k,j is dual to θ+−k,j+k. These pairs give n/2 − k − 1
columns that map to stalagmites.
(iv) For n/2− k < j ≤ n/2, θ−−k,j is dual to θ−+k,j−1. These pairs give k stalagmites
and they are mapped to columns.
(v) All the curves joining dual pairs listed in (i)-(iv) are pairwise disjoint and do
not meet the curve joining the points corresponding to θ++

k,k and θ−−k−1,n/2−k+1 or

the one for θ++
k+1,k+1 and θ−−k,n/2−k. Thus the stalactites are contained in a triangle

with one vertical side, one given by the curve for θ++
k,k and θ−−k−1,n/2−k+1 and one

along ∂+P and the stalagmites are contained in a triangle with one vertical side,
one given by the curve for θ++

k+1,k+1 and θ−−k,n/2−k and one along ∂−P.

(vi) The points listed in (i)–(iv) account for all the points of Fix(α2
n) in C±k except

θ++
k,k , θ

−−
k,n/2−k, θ

+−
k,k , θ

+−
k,0 , θ

−+
k,n/2−k−1, θ

−+
k,0 ,
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which we describe next.
(vii) If 0 < k < n/2−1 then there are dual pairs θ++

k,k , θ
−−
k−1,n/2−k+1 and θ+−k,0 , θ

−+
k−1,n/2−k

whose curves cross from Ck to Ck−1 and a pair θ+−k,k , θ
−+
k,0 whose curve lies within

Ck. These are three columns and they each map to the same column if k is even
and to the symmetric column if k is odd. If 0 ≤ k < n/2− 2 then the penultimate
sentence says that the points dual to θ−−k,n/2−k and θ−+k,n/2−k−1 in Ck are θ++

k+1,k+1

and θ+−k+1,0 respectively in Ck+1. This accounts for the duality of the points in (vi)

when 0 < k < n/2− 2 .
(viii) If k = n/2 − 2 then θ−+k,n/2−k−1 = θ−+n/2−2,1 in Cn/2−2 is dual to θ+−k+1,0 =

θ+−n/2−1,0 in Cn/2−1 and the column joining them is mapped to the symmetric column;

but there is no point θ++
k+1,k+1 and, instead, θ−−k,n/2−k = θ−−n/2−2,2 = 1/4− 1/(n + 2)

is dual to its image θ−−n/2+1,n/2−1 = 1/4 + 1/(n+ 2) by a curve of symmetric points

that is mapped to itself as in Proposition 7.1 (iv). This accounts for the duality of
the points in (vi) when k = n/2− 2.
(ix) If k = n/2− 1 then, as usual, θ+−k,k and θ−+k,0 are dual in Cn/2−1 while θ+−k,0 and

θ−+k−1,n/2−k are dual by a column that crosses from Cn/2−1 to Cn/2−2 and both of

these curves are mapped to the symmetric columns. Again there is no point θ++
k,k

but θ−−k,n/2−k = θ−−n/2−1,1 is dual to θ−−n/2,n/2 by a curve through the origin consisting

of fixed points, and these are given by θ = 1/4± 1/(2(n+ 2)) as in Proposition 7.1
(iii). This accounts for the duality of the points in (vi) when k = n/2− 1.
(x) If k = 0 then the points θ++

k,k , θ
+−
k,0 , θ

+−
k,k , θ

−+
k,0 all reduce to the vertex (x, x, z) =

(1, 1, 1) which does not belong to a curve of fixed points that enters P. Together
with the two points whose duality is given in (vii) this covers all six points in C0

listed in (vi).

Proof By Proposition 7.4, the curves in Fix(α2
n) through points corresponding to

parameters listed in (i) to (iv), and hence also the images of these curves, do not
cross the edge of any corridor. Thus a point listed here belongs to the same corridor
as its dual and the same is true of their images.

Suppose that k is even. From Proposition 7.2 we recall the image corridors of
the pairs of points in (i)–(iv). For 0 < j < k, θ++

k,j and θ+−k,j in (i) are both mapped

into C2j−k, while, for k < j ≤ n/2−2, θ++
k,j and θ−+k,j−k in (ii) are both mapped into

C2j−k. Again, for 0 < j < n/2 − k, θ−−k,j and θ+−k,k+j in (iii) are both mapped into

Ck+2j−1, while, for n/2−k < j ≤ n/2, θ−−k,j and θ−+k,j−1 in (iv) are both mapped into
Ck+2j−1. Notice that these image corridors are C2−k, C4−k, . . . , Ck−4, Ck−2, not Ck,
but then Ck+2, Ck+4, . . . , Cn−k−6, Cn−k−4 and Ck+1, Ck+3, . . . , Cn−k−5, Cn−k−3,
not Cn−k−1, but then Cn−k+1, Cn−k+3, . . . , Cn+k−3, Cn+k−1. Since C2−k = Ck−3
and Cn+k−1 = Cn−k etc, these image corridors are all of the corridors except for
Ck itself, the symmetric corridor Cn−k−1 and one adjacent to each of these, namely
Ck−1 and Cn−k−2. In particular, they are all distinct which means that the two
points mapped into each of them must be dual, proving (i)–(iv). If k is odd then,
by Proposition 7.2(v), n is added to the number of the image corridor making it
symmetric to the one just described but not affecting the argument.

(v) The curves joining these dual pairs are mapped, according to the proof of (i)–
(iv), into different corridors so any two are disjoint because otherwise their image
would contain a curve in Fix(α2

n) crossing the edge of a corridor, which is excluded



CURVES OF PERIOD TWO POINTS FOR TRACE MAPS 21

by Proposition 7.4. The curves from θ++
k,k and from θ−−k,n/2−k to the edge of Ck map

into the corridors Ck and Cn/2−k−1 respectively and so again are disjoint from the
other curves just considered. See Figure 1.

(vi) The set of parameters of points of Fix(α2
n) in C±k is given before Proposition

7.2 as

{θ++
k,j : 1 ≤ j ≤ n/2− 2} ∪ {θ−−k,j : 1 ≤ j ≤ n/2} ∪ {θ+−k,j , θ

−+
k,j : 0 ≤ j < n/2}

and these are those listed in (i)–(iv) together with

{θ++
k,k , θ

−−
k,n/2−k, θ

+−
k,k , θ

+−
k,0 , θ

−+
k,n/2−k−1, θ

−+
k,0 }.

(vii) Proposition 7.1 (iii) and (iv) showed that θ++
k,k = k/(2(n − 2)) is dual to

θ−−k−1,n/2−k+1 = k/(2(n+ 2)). The other pair was discussed in Proposition 7.4.

(viii) and (ix) The exceptional cases k = n/2 − 2 and n/2 − 1 were included in
Proposition 7.1 (iv) and (iii) respectively. See Figure 4.

(x) When k = 0, θ−−k,n/2−k = θ−−0,n/2 is dual to θ++
1,1 and θ−+k,n/2−k−1 = θ−+0,n/2−1 is

dual to θ+−1,0 according to the case k = 1 of (vii), while θ++
k,k = θ+−k,k = θ+−k,0 = θ−+k,0 = 0

all reduce to (1, 1, 1). As in [HM] Lemma 2.11, the curve γ+(x) of Proposition 7.1
(iii) of fixed points through the vertex (1, 1, 1) of T does not enter P. �

Remarks From (i) of Theorem 7.5, the total number of stalactites is given by

2
∑n/2−1
k=1 (k−1) = (n2−1)(n2−2), which agrees with the number 2

∑n/2−2
k=0 (n2−k−2)

of columns in (ii) that are mapped to stalactites. Also, from (iv) there, the total

number of stalagmites is 2
∑n/2−1
k=0 k = n

2 (n2 − 1), which agrees with the number

2
∑n/2−1
k=0 (n2 − k − 1) of columns in (iii) that are mapped to stalagmites.

Notice how the fact in (ii) and (iii) that columns join points whose second suffix
differs by k is illustrated in Figure 1 as is the fact that the stalactites in (i) and
the stalagmites in (iv) are enclosed in the triangles mentioned in (v) bounded
by the vertical lines and the curve joining the points corresponding to θ++

k,k and

θ−−k−1,n/2−k+1 or the one for θ++
k+1,k+1 and θ−−k,n/2−k. The notation in (i) and (iv)

indicates that each stalactite or stalagmite connects adjacent points of Fix(α2
n)∩∂P

as seen in Figure 1, but actually the order of their endpoints changes at a place
that depends on k since, for 0 < j < k,

k(n/2− 1) + j

n(n− 2)
= θ++

k,j < θ+−k,j =
kn/2 + j

n2 − 2
⇐⇒ j <

k

2

(
1− 1

n− 1

)
.

§8 Some curves of period 2 or 4 not in P

In this section we determine certain types of period 2 and period 4 curves that
are not in P. For period 2 we study the situation where the action of αn on such
period two points is given by

(x, y, z) 7→ (y, x, z) 7→ (x, y, z).(8.1)

Recall that

(x, y, z)αn = (v1, v2, v3)

= (−xUn−2(y) + zUn−1(y),

Un(x∗)y − Un−1(x∗)(−Un−1(y)x+ zUn(y)),

yUn−1(x∗)− Un−2(x∗)(−Un−1(y)x+ zUn(y))).(8.2)
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Here x∗ = v1 = −xUn−2(y) + zUn−1(y). If, as indicated in (8.1), we require v1 = y,
then we have y = x∗ = −xUn−2(y) + zUn−1(y), and we can solve for z = zn(x, y),
where

zn(x, y) =
y + xUn−2(y)

Un−1(y)
=
y + 2xyUn−1(y)− xUn(y)

Un−1(y)
.

Substituting z = zn(x, y) into v2 gives

v2 = Un(x∗)y − Un−1(x∗)(−Un−1(y)x+ zUn(y))

= x(Un(y)2 + Un−1(y)2 − 2yUn(y)Un−1(y))

= x,

where we get the last equality from Lemma 4.1 (vii).
Now substitute z = zn(x, y) into v3 and we get

v3 =
[Un(y)2 + Un−1(y)2 − 2yUn(y)Un−1(y)](y + 2xyUn−1(y)− xUn(y))

Un−1(y)
= zn(x, y).

Here we again use Lemma 4.1 (vii) to give the last equality.

Proposition 8.1. Fix n ≥ 1 and x, y ∈ R. Then we have:
(i) Let v = (x, y, zn(x, y)). Then vαn = (y, x, zn(x, y)).
(ii) If zn(x, y) = zn(y, x), then vα2

n = v.

Proof (i) is proved above and (ii) follows from (i), since (i) shows that

(x, y, zn(x, y))α2
n = (y, x, zn(x, y))αn = (y, x, zn(y, x))αn

= (x, y, zn(y, x)) = (x, y, zn(x, y)). �

Define B
(2)
n (x, y) to be the numerator of zn(x, y)− zn(y, x):

B(2)
n = (y + 2xyUn−1(y)− xUn(y))Un−1(x)− (x+ 2xyUn−1(x)− yUn(x))Un−1(y)

= yUn−1(x)− xUn(y)Un−1(x)− xUn−1(y) + yUn(x)Un−1(y).

Next we study curves of period four where the action of αn looks like

(x, y, z) 7→ (−y,−x, z) 7→ (−x,−y, z) 7→ (y, x, z) 7→ (x, y, z).(8.3)

We again use (8.2). If this time we require v1 to be −y, then x∗ = −y =
−xUn−2(y) + zUn−1(y), and we can solve for z = Zn(x, y), where

Zn(x, y) =
−y + xUn−2(y)

Un−1(y)
=
−y + 2xyUn−1(y)− xUn(y)

Un−1(y)
.

Substituting z = Zn(x, y) into v2 gives

v2 = Un(x∗)y − Un−1(x∗)(−Un−1(y)x+ zUn(y))

= −x(Un(y)2 + Un−1(y)2 − 2yUn(y)Un−1(y))

= −x,

where we get the last equality from Lemma 4.1 (vii).
Similarly, substituting z = Zn(x, y) into v3 one finds that v3 = z = Zn(x, y).

Thus (x, y, z)αn = (−y,−x, z) if x, y, z satisfy −xUn−2(y) + zUn−1(y) = −y.
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Repeating the above we start with the expression (−y,−x, z) and apply αn:

(−y,−x, z)αn = (v1, v2, v3)

= (yUn−2(x)− zUn−1(x),

Un(x∗)(−x)− Un−1(x∗)(−Un−1(x)y + zUn(x)),

− xUn−1(x∗)− Un−2(x∗)(−Un−1(x)y + zUn(x))).

Here x∗ = v1 = yUn−2(x) − zUn−1(x). If we put v1 = −x, as dictated by (8.3),
then as in the above we find that (v1, v2, v3) = (−x,−y, z).

Repeating the above two more times (with no additional hypotheses) gives:

Theorem 8.2. Let n be even and let x, y, z ∈ R satisfy

−xUn−2(y) + zUn−1(y) + y = 0 and yUn−2(x)− zUn−1(x) + x = 0.

Then (x, y, z) is a point of period 4 for αn with the action given by (8.3). �

Now solving the first equation in the above result for z, and substituting into
the second gives a function whose numerator is

B(4)
n (x, y) = xUn−1(y)− yUn−2(x)Un−1(y)− yUn−1(x) + xUn−2(y)Un−1(x).

It is easy to see that B
(4)
n (x, y) is the numerator of Zn(x, y)− Zn(−y,−x), similar

to the period two case. In fact B
(4)
n (−x, y) = B

(2)
n (x, y). We draw both curves in

Figure 5 for n = 12 where the period 2 curve crosses the diagonal x = y in the first
rectangle of the first quadrant.

Since B
(4)
n (−x, y) = B

(2)
n (x, y) the duality for points of period 4 given by (8.3)

will then follow from Theorem 8.13 which gives a description of the duality for
points of period 2 as determined by the rule (8.1). In order to study duality for
such period 2 points we first find where these curves of period 2 meet ∂T .

Lemma 8.3. For all n ≥ 1 and all x, y ∈ R we have

E(x, y, zn(x, y))− 1 =

(
x− Un+1(y)

2 + Un−1(y)
2

)(
x− Un−1(y)

2 + Un−3(y)
2

)
Un−1(y)2

=
(x− Tn+1(y))(x− Tn−1(y))

Un−1(y)2
.

Proof Substituting for zn(x, y) shows that the two sides of the first equality are

equal. The second equality follows from the fact that Tn = Un−Un−2

2 . �

Now the points of interest are on the curve E(x, y, zn(x, y)) = 1 and also satisfy

B
(2)
n (x, y) = 0. From Lemma 8.3 we see that E(x, y, zn(x, y)) = 1 determines two

cases:
(i) x = Tn+1(y); and (ii) x = Tn−1(y).

Thus to determine the points where these curves of period 2 meet ∂T we solve

B
(2)
n (Tn±1(y), y) = 0.

Proposition 8.4. (i) For all n,m ≥ 1 we have:

Un(Tm(x)) = 2

n/2∑
k=0

T(n−2k)m(x).
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Figure 5. Diagonals, fundamental rectangles and curves of period
2 and 4 points for α12 projected onto the xy-plane.

(ii) For all n ≥ 1 we have:

B(2)
n (Tn+1(y), y) =

1

2
(U(n+1)2−3(y)− Un2−2(y)− U2n(y) + 1).

The roots of B
(2)
n (Tn+1(y), y) are y = cos 2πθ, where

θ =
k

n2 + 2n
, θ =

k

n2 − 2
, θ =

k

2n
,

for any k ∈ Z.
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(iii) B
(2)
n (Tn−1(y), y) = 1

2 (Un2−2(y)−Un2−2n−2(y)−U2n−2(y)−1). The roots of

B
(2)
n (Tn−1(y), y) are y = cos 2πθ, where

θ =
k

n2 − 2n
, θ =

k

n2 − 2
, θ =

k

2n
,

for any k ∈ Z.

Proof One proves (i), and then for each of (ii), (iii) one proves the first statement
using (i), and then uses this to find the roots. The details are left to the reader. �

Proposition 8.5. The places where the period two points (x, y, zn(x, y)) meet ∂T
are when

(i) x = cos 2π(n+ 1)θ, y = cos 2πθ, with θ as given in Proposition 8.4 (ii); and
(ii) x = cos 2π(n− 1)θ, y = cos 2πθ, with θ as given in Proposition 8.4 (iii). �

Now the denominator of zn(x, y)− zn(y, x) is Un−1(x)Un−1(y) and Un−1(x) has

roots x = cos πjn , j ∈ Z \ nZ. We will thus split the square [−1, 1]2 into rectangles

bounded by the lines x = cos πjn , y = cos πkn ; these (closed) rectangles we will call
fundamental rectangles. Each such fundamental rectangle has four corners. Some
of the fundamental rectangles meet the boundary of [−1, 1]2; we will call these
boundary rectangles. A corner c = (x, y) will be called a diagonal corner if x = ±y.

Let ∆+ denote the diagonal x = y, let ∆− denote the diagonal x = −y and let
∆± = ∆+∪∆−. A diagonal rectangle is a rectangle (square) one of whose diagonals
is in ∆±.

We split the square [−1, 1]2 into four triangles determined by the two diagonals
in [−1, 1]2. These are naturally called the bottom, left, top and right triangles.

Let βn be the set of points (x, y, zn(x, y)) ∈ R3 having period 2 for αn, where

B
(2)
n (x, y) = 0. Let

πxy : R3 → R2, (x, y, z) 7→ (x, y),

be the projection onto the xy-plane. If R is a fundamental rectangle, then we will
denote the set π−1xy (R) ∩ βn by βn,R. Then πxy(βn,R) is a curve in R.

Proposition 8.6. (i) Each non-boundary, non-diagonal corner of each fundamen-
tal rectangle is a point of βn.

(ii) If R is a non-boundary fundamental rectangle, then the only places where βn
meets ∂R are at the corners of R.

(iii) Suppose that a part of the curve βn is in a fundamental rectangle R and
exits R at a (non-boundary, non-diagonal) corner c of R. Assume that c = (x0, y0).
Then the rectangle that the curve βn enters (after passing through c) is the rectangle
opposite R relative to c.

Proof (i) Such a corner of a fundamental rectangle has the form (x0, y0) = (cos πjn , cos πkn ),
j, k ∈ {1, . . . , n− 1}, so that Un−1(x0) = Un−1(y0) = 0. Thus

B(2)
n (x0, y0) = y0Un−1(x0)−x0Un(y0)Un−1(x0)−x0Un−1(y0)+y0Un(x0)Un−1(y0) = 0.

(ii) Suppose that (x0, y0) ∈ ∂R where B
(2)
n (x0, y0) = 0. Since B

(2)
n (x, y) =

−B(2)
n (y, x) we can assume that y0 = cos πkn , k ∈ {1, . . . , n− 1}, and so

B(2)
n (x0, y0) = y0Un−1(x0)− x0Un(y0)Un−1(x0)− x0Un−1(y0) + y0Un(x0)Un−1(y0)

= Un−1(x0) · (y0 − x0Un(y0)).
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Now let θ = πk
n , k ∈ {1, . . . , n− 1}, so that y0 = cos θ. Then

Un(y0) =
sin(n+ 1)θ

sin θ
=

sinnθ cos θ + cosnθ sin θ

sin θ
= cosnθ = cos(kπ).

Thus we have Un(y0) = ±1, and if we have

0 = B(2)
n (x0, y0) = Un−1(x0) · (y0 − x0Un(y0)),

then we either have (a) Un−1(x0) = 0, or (b) y0 = x0, or (c) y0 = −x0. In each
case we see that x0 = cos πhn , h ∈ {1, . . . , n− 1}, as required.

(iii) This result will follow if we can show that the tangent to βn at the corner c
is neither horizontal nor vertical. The relevant slope is obtained by differentiating

B
(2)
n (x, y) w.r.t. x and solving for y′ = d

dxy(x) at the point c = (x0, y0). Hence:

y′
[
Un−1(x)− xUn−1(x)

d

dy
Un(y)− x d

dy
Un−1(y) + Un(x)Un−1(y) + yUn(x)

d

dy
Un−1(y)

]
= −y d

dx
Un−1(x) + Un(y)Un−1(x) + xUn(y)

d

dx
Un−1(x) + Un−1(y)− yUn−1(y)

d

dx
Un(x).

Using the fact that Un−1(cos πjn ) = 0 and the expression for the derivative of
Un−1(x) from Lemma 4.2 we obtain:

y′ =
Un(x0) · (Un(y0)x0 − y0) · (y20 − 1)

Un(y0) · (Un(x0)y0 − x0) · (x20 − 1)
.

Since x0 = cos πjn , y0 = cos πkn one has Un(x0), Un(y0) ∈ {±1} and Tn(x0) =
Un(x0), Tn(y0) = Un(y0). Since the corner is a non-diagonal corner that is not
on the boundary it follows that the numerator and the denominator of the above
expression cannot be zero. The result follows. �

As can be seen from Figure 5 (where n = 12) it is possible that βn exits a
boundary rectangle at a non-corner point.

Let R be a fundamental rectangle. From Proposition 8.5 the points (x, y) of
βn,R ∩ ∂T have the form

(i) x = cos
2(n+ 1)mπ

n2 + 2n
, y = cos

2mπ

n2 + 2n
, 0 ≤ m ≤ n2 + 2n

2
;

(ii) x = cos
2(n− 1)mπ

n2 − 2n
, y = cos

2mπ

n2 − 2n
, 0 ≤ m ≤ n2 − 2n

2
;

(iii) x = cos
2(n+ 1)mπ

n2 − 2
, y = cos

2mπ

n2 − 2
, 0 ≤ m ≤ n2 − 2

2
;

(iv) x = cos
2(n− 1)mπ

n2 − 2
, y = cos

2mπ

n2 − 2
, 0 ≤ m ≤ n2 − 2

2
.

In Figure 6 we show the points of types (i)-(iv), drawn as crosses, diamonds,
circles and asterisks, respectively, for n = 12. Compare Figure 6 with Figure 5.

We show that each non-diagonal rectangle R has exactly two points of βn,R∩∂T ;
these are either of types (i) and (iv), or of types (ii) and (iii). These will then be
dual.

We introduce notation for the fundamental rectangles: note that the square
[−1, 1]2 is a union of n2 fundamental rectangles. Each such rectangle R has a lower
left corner with coordinates(cos pπn , cos qπn ). We will call R the (p, q)-rectangle. Thus
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Figure 6. Points of type (i)-(iv) for α12.

the (1, 1) rectangle is the top right rectangle of [−1, 1]2 and the (n, n)-rectangle is
the bottom left rectangle of [−1, 1]2. We also note that the (p, q)-rectangle is also
the (±p+ 2un,±q + 2vn)-rectangle for any u, v ∈ Z. Let Ro be the interior of R.

Let Pα denote the set of points of type α, α ∈ {(i), (ii), (iii), (iv)}.

Lemma 8.7. Let R be the (p, q)-rectangle.

(i) Suppose that (x, y) ∈ Ro ∩ P(i) where x = cos 2(n+1)kπ
n2+2n , y = cos 2kπ

n2+2n . Then

q = d 2k
n+2e and p = d 2(n+1)k

(n+2) e. No two points of P(i) can be in Ro ∩ P(i).
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(ii) Suppose that (x, y) ∈ R ∩ P(ii) where x = cos 2(n−1)kπ
n2−2n , y = cos 2kπ

n2−2n . Then

q = d 2k
n−2e and p = d 2(n−1)k(n−2) e. No two points of P(ii) can be in Ro ∩ P(ii).

(iii) Suppose that (x, y) ∈ R ∩ P(iii) where x = cos 2(n+1)kπ
n2−2 , y = cos 2kπ

n2−2 . Then

q = d 2k
n−2/ne and p = d 2(n+1)k

(n−2/n)e. No two points of P(iii) can be in Ro.

(iv) Suppose that (x, y) ∈ R ∩ P(iv) where x = cos 2(n−1)kπ
n2−2 , y = cos 2kπ

n2−2 . Then

q = d 2k
n−2/ne and p = d 2(n−1)k(n−2/n)e. No two points of P(iv) can be in Ro.

Proof (i) We have

cos
qπ

n
< cos

2kπ

n2 + 2n
< cos

(q − 1)π

n
.

This gives

(q − 1)π

n
<

2kπ

n2 + 2n
<
qπ

n
and so q − 1 <

2k

n+ 2
< q,

which gives q = d 2k
n+2e. One similarly shows that p = d 2(n+1)k

(n+2) e.
Now if (xj , yj) ∈ Ro ∩ P(i), j = 1, 2, where xj = cos

2(n+1)kjπ
n2+2n , yj = cos

2kjπ
n2+2n ,

then we would have d 2(n+1)k1
(n+2) e = ±d 2(n+1)k2

(n+2) e+2un and d 2k1
(n+2)e = ±d 2k2

(n+2)e+2vn

for some u, v ∈ Z. This proves (i).
Cases (ii), (iii), (iv) are similar. �

Now note that if k = r(n+ 2)/2, r ∈ Z, then

y = cos
2kπ

n2 + 2n
= cos

rπ

n
, x = cos

2(n+ 1)kπ

n2 + 2n
= (−1)r cos

rπ

n
= (−1)ry.

Thus this point is a diagonal corner point. Similarly x = cos 2(n+1)kπ
n2+2n = (−1)ry

when k = rn/2.
Number the corners of ∆+ as 0, 1, 2, . . . starting at the level y = 1. Number the

corners of ∆− as 0, 1, 2, . . . starting at the level y = 1. Let (i)k denote the point of
type (i) with parameter k. This gives part of

Proposition 8.8. (i) Type (i) points (x, y) x = cos 2(n+1)kπ
n2+2n , y = cos 2kπ

n2+2n are in

∆± if and only if k = rn
2 or k = r(n+2)

2 . The even numbered corners of ∆+ are
points of type (i), as are the odd numbered points of ∆−. These corners of type (i)
are where k = r(n+ 2)/2.

(ii) Type (ii) points (x, y) x = cos 2(n−1)kπ
n2−2n , y = cos 2kπ

n2−2n are in ∆± if and only

if k = rn
2 or k = r(n−2)

2 . When k = r(n−2)
2 the type (ii) point is a corner diagonal

point and is also a point of type (i) corresponding to k = r(n+2)
2 .

(iii) There are no type (iii), (iv) points on the diagonals.
(iv) For 0 < r < n/2 the points

(i)r(n+2)/2, (ii)rn/2, (iii)rn/2, (iv)r(n+2)/2

are all in the same diagonal rectangle. This diagonal rectangle meets ∆+ if and
only if r is even.

Proof The proofs are straightforward; for example for (iv) we show that the x-
values for (i)r(n+2)/2 and (ii)rn/2 differ by the correct amount: recalling that the
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(i)r(n+2)/2 point is a corner and that 0 < r ≤ n/2− 1 we have:∣∣∣∣2(n+ 1)r(n+ 2)/2

n2 + 2n
− 2(n− 1)rn/2

n2 − 2n

∣∣∣∣ =
(n− 1)r

n− 2
− (n+ 1)r

n
=

2r

n(n− 2)
≤ 2(n/2− 1)

n(n− 2)
=

1

n
. �

This shows that the diagonals have alternately squares with 1 (interior) point
(of type (i)) and 3 points, where the common corner point is of type (i) and (ii).

Let ρ denote rotation of R2 by π about the origin. Let r+, r− denote the re-
flections across ∆+ and ∆−, respectively. So r−r+ = ρ. The group 〈r+, r−〉 acts
transitively on the four triangles of [−1, 1]2. Thus by the next result we need only
consider one of these triangles (the bottom triangle).

Proposition 8.9. (i) ρ(Pα) = Pα for all α ∈ {(i), (ii), (iii), (iv)}.
(ii) r+(P(i)) = P(i) and r−(P(i)) = P(i).
(iii) r+(P(ii)) = P(ii) and r−(P(ii)) = P(ii).
(iv) r+(P(iii)) = P(iv), r+(P(iv)) = P(iii), r−(P(iii)) = P(iv), r−(P(iv)) = P(iii).

Proof (i) If (x, y) ∈ P(i), then (x, y) = (cos 2(n+1)kπ
n2+2n , cos 2kπ

n2+2n ). Then

ρ(x, y) = (−x,−y) =

(
− cos

2(n+ 1)kπ

n2 + 2n
,− cos

2kπ

n2 + 2n

)
=

(
cos(

2(n+ 1)kπ

n2 + 2n
+ π), cos(

2kπ

n2 + 2n
+ π)

)
=

(
cos

2(n+ 1)(k + n2+2n
2 )π

n2 + 2n
, cos

2(k + n2+2n
2 )π

n2 + 2n

)
∈ P(i).

Here we used the fact that n is even to conclude that k + n2+2n
2 ∈ Z.

Similarly one shows that ρ(P(ii))) = P(ii), ρ(P(iii))) = P(iii) and ρ(P(iv))) = P(iv).

(ii) Let (x, y) = (cos 2(n+1)kπ
n2+2n , cos 2kπ

n2+2n ) ∈ P(i). Then r+(x, y) = (y, x) and so
we need to find some m ∈ Z such that

(y, x) =

(
cos

2kπ

n2 + 2n
, cos

2(n+ 1)kπ

n2 + 2n

)
=

(
cos

2(n+ 1)mπ

n2 + 2n
, cos

2mπ

n2 + 2n

)
∈ P(i).

This is equivalent to solving the rational congruences

2m(n+ 1)

n2 + 2n
≡ 2k

n2 + 2n
mod 2; and

2m

n2 + 2n
≡ 2k(n+ 1)

n2 + 2n
mod 2.

This is equivalent to solving the integral congruences

m(n+ 1) ≡ k mod n2 + 2n; and m ≡ k(n+ 1) mod n2 + 2n.

Since (n+1)2 ≡ 1 mod n2 +2n one easily sees that any m solving the first of these
equations will automatically solve the other. Now we can solve the first equation
since gcd(n+ 1, n2 + 2n) = 1. This does this case and r−(P(i)) = P(i) follows from
the fact that r− = ρr+, together with what we have done above.

(iii) The proof of (iii) is similar to the proof of (ii).
(iv) We will prove the first of these as the rest are similar or follow easily. So

let (x, y) ∈ P(iii), so that (x, y) =
(

cos 2(n+1)kπ
n2−2 , cos 2kπ

n2−2

)
. Then we need to find

m ∈ Z such that

r+(x, y) = (y, x) =

(
cos

2kπ

n2 − 2
, cos

2(n+ 1)kπ

n2 − 2

)
=

(
cos

2(n− 1)mπ

n2 − 2
, cos

2mπ

n2 − 2

)
.
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As in the above this amounts to solving the integral congruences

m(n− 1) ≡ k mod n2 − 2; and m ≡ k(n+ 1) mod n2 − 2.

Now (n−1)(n+1) ≡ 1 mod n2−2 and (as in the above), we see that solving one of
these equations is equivalent to solving both of them. Since gcd(n− 1, n2 − 2) = 1
we see that there is a solution to the first equation. �

Let Cn denote the set of corner points of type (i) of diagonal rectangles as de-
scribed in Proposition 8.8.

Let Tk be the part of [−1, 1]2 that lies between y = cos kπn , y = cos (k−1)π
n and

the diagonals. Thus Tk is a trapezoid and from Proposition 8.8 one sees that two
of its (opposite) corners are in Cn.

Assume without loss of generality that Tk is in the bottom triangle, and that
the corners of Tk that are in Cn are the bottom left and the top right corners of
Tk. Note that by the symmetry in x there are an even number of rectangles that
are completely contained in Tk. Denote them by R1, . . . , R2h, ordered from left to
right. Here h = k − n/2− 1.

Now the bottom left corner of Tk has coordinates (cos kπn , cos kπn ). Since it is

a point of Cn it will also have coordinates (cos (n+1)2mπ
n2+2n , cos 2mπ

n2+2n ), where m =

r(n+ 2)/2. Then we have kπ
n ≡

(n+1)2mπ
n2+2n = (n+1)πr

n mod 2π

Lemma 8.10. The rectangles R1, R3, . . . , R2h−1 are the only rectangles Ri to have
points of type (i) in them and each such rectangle has exactly one type (i) point.

Proof The points of type (i) (x = cos 2(n+1)k′π
n2+2n , y = cos 2k′π

n2+2n ), that are in Tk are

(x = cos 2(n+1)(n/2−i)π
n2+2n , y = cos 2(n/2−i)π

n2+2n ), k′ ∈ Z, i ≥ 0. Thus they have the form

(xi = cos

(
kπ

n
− 2(n+ 1)iπ

n2 + 2n

)
, yi = cos

(
kπ

n
− 2iπ

n2 + 2n

)
).

Since n ≥ 4 we get

(k − 2)π

n
<
kπ

n
− 2(n+ 1)π

n2 + 2n
<

(k − 1)π

n
,

and so we see that (x1, y1) ∈ R1. If n = 4, then this is all we need to show.
If n > 4, then since

(k − 4)π

n
<
kπ

n
− 4(n+ 1)π

n2 + 2n
<

(k − 3)π

n
,

we see that (x2, y2) ∈ R3.
Similarly, if n > 6, then since

(k − 6)π

n
<
kπ

n
− 6(n+ 1)π

n2 + 2n
<

(k − 5)π

n
,

we see that (x3, y3) ∈ R5. Continuing inductively shows that R1, R3, . . . , R2h−1
each have at least one of these points in them.

Now we count the number of such rectangles in the bottom triangle that have
such a point in them. This is

(
n

2
− 1) + (

n

2
− 2) + · · ·+ 2 + 1 = (

n

2
− 1)(

n

4
).

There are four such triangles, containing a total of n(n−2)
2 such points.
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From Proposition 8.8 we see that there are 2n+1 type (i) points on the diagonals,
giving a total of (n2 + 2n)/2 + 1 such points. This is exactly the number of points
of type (i). Lemma 8.10 follows. �

We immediately obtain:

Proposition 8.11. (a) The rectangles in the bottom triangle that contain points of
type (i) (in their interiors) are the (p, q)-rectangles where p is odd and n− q + 1 <
p < q.

The points of type (i) in the bottom triangle that are on ∆+ include the top
right corners of the (p, p)-rectangles where n/2 < p ≤ n is odd; each such rectangle
contains one other point of type (i) in its interior. This accounts for the points of
type (i) that are on ∆+.

In the bottom triangle the top left corners of the (p, n + 1 − p)-rectangles where
0 < p < n/2 is odd, are points of type (i) and these rectangles also contain a point
of type (i) in their interior. This accounts for the points of type (i) on ∆−. �

In a similar way we prove:

Proposition 8.12. (b) The rectangles inside the bottom triangle that contain points
of type (ii) (in their interiors) are the (p, q)-rectangles where n− q+ 2 < p < q− 1
and p is even.

(c) The rectangles inside the bottom triangle that contain points of type (iii) (in
their interiors) are the (p, q)-rectangles where n− q + 1 < p < q and p is even.

(d) The rectangles inside the bottom triangle that contain points of type (iv) (in
their interiors) are the (p, q)-rectangles where n− q + 1 < p < q and p is odd.

There are no points of type (iii) or (iv) on ∆±.
The diagonal rectangles have (alternately) either no type (iii) or (iv) points in

them or one type (iii) point and one type (iv) point in them. The (n/2, n/2 + 1)-
rectangle contains a type (iii) and a (iv) point. �

Thus the following completely describes the duality for points in the bottom
triangle, and so by symmetry for all points. Compare Figures 5 and 6. Also,
duality for points on ∆± was done before §8.

Theorem 8.13. (Bi) Each point of type (i) in the bottom triangle is dual to the
unique point of type (iv) that is in the same rectangle. These rectangles are the
(p, q)-rectangles in the bottom triangle where p is odd. Every such rectangle (inside
the bottom triangle) has one type (i) point and one type (iv) point. This gives the
duality for any type (i) or (iv) point in the bottom rectangle.

(Bii) Each point of type (ii) in the bottom triangle is dual to the unique point
of type (iii) that is in the same rectangle. These rectangles are the (p, q)-rectangles
in the bottom triangle where p is even. Every such rectangle has one type (ii) point
and one type (iii) point. These are dual points if the points are in the interior of
the rectangle.

If one of these points is not in the interior of the rectangle, then the top right
[or top left] corner is on ∆− [or ∆+] and is of type (ii). The type (iii) point in
the interior of this rectangle is then dual to the point of type (iv) which is in the
reflection of this rectangle across ∆− [or ∆+]. This gives the duality for any type
(ii) or (iii) point in the bottom rectangle.

The squares above a rectangle having a type (ii) point in their top right [or top
left] corner have a point of type (iii) in them. These squares are invariant under
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r− [or r+] and the image of the type (iii) point is a type (iv) point; these are dual
points. �
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