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ABSTRACT. We consider an infinite family of trace maps ay, and their action
on R3. Trace maps fix certain invariant surfaces, and in an earlier paper we
found that the fixed points for au, on one such surface were joined in pairs by
curves of fixed points, thus determining a ‘duality’ for such fixed points. We
now extend this idea to determine the duality for all the points of period 2
that lie in the planes x = £y and for certain others that do not.
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§1 INTRODUCTION

We are studying a family o, of maps from a 3-ball 7 C R? to itself and how a
disc P in a plane of symmetry of 7 meets its image (P)ay,. In [HM] we found the
pattern of curves of fixed points of «;,, and Figure 2 shows those in P. A certain
toral automorphism reveals how (0P)«,, winds back and forth in 9T, and, in this
paper, we discover how 9P N (OP)a,, determines the curves of period 2 points in
P, some of which are shown in Figure 1.

Let us now describe the situation more formally. Given A, B € SL(2,R), the map
(A, B) — (trace(A),trace(B),trace(AB)) can be used to associate a polynomial
diffeomorphism of R3 to each automorphism of the (non-abelian) free group of
rank 2. These diffeomorphisms are called trace maps and have been widely studied,
see [Cas, Can, RB1, RB2, ABG, Ig, BR, LW, PWW]. Each trace map gives a
l-parameter family of area preserving maps of certain level surfaces that foliate
R3. The restriction to one special surface 9T (where 7 is a 3-ball) is covered by a
well-understood linear action on the 2-torus, and the set of periodic points is dense
there. In [HM] we defined a family of trace maps and determined their curves of
fixed points. For each trace map «, in our family, we determined pairs of fixed
points in the surface 7 that are dual in the sense of being connected by a curve
of fixed points of a,,. This gave a duality for all fixed points of a,, on OT.

In this paper we shall study, for a,, in the same family of trace maps, all those
points of period 2 that lie in the planes of symmetry x = £y of R? (in §7), and then
some of the points of period 2 that are not in these planes (in §8). In Theorem 7.5
we determine the duality of points in the plane © = y (or £ = —y) and the pattern
of the curves of points of period 2 joining them (which, according to §5, also lie in
that plane, so we are studying the intersection of that plane and its image). This
will involve a study of multiplication modulo 1 by n+1 and by n — 1 in the interval
[0, 1] partitioned into 2n equal subintervals. In Theorem 8.13 we look at period 2
points not in these planes; this involves computations with Chebyshev polynomials.
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As can be seen in Figure 1, the curves of period 2 points in the z = +y planes
mostly lie in corridors separated by vertical lines; one curve that crosses such a
vertical line forms with that line a lower triangle that encloses curves that we
shall call stalagmites and an upper triangle that encloses curves that we shall call
stalactites, while other curves not thus enclosed reach from top to bottom (and
we shall call them columns). It is this pattern and the duality that it determines
that we shall explore in §§2-7 of this paper. We introduce our family of trace maps
in §2 and their curves of fized points in §3, see Figure 2, while the properties of
Chebyshev polynomials needed are collected in §4. General properties of the curves
of period two points in the plane x = y are developed in §5 and the curves that
are symmetric (in the sense that they are symmetric to their image, see Figure 3)
are studied in §6. In §7 we study which corridor contains the image of each period
two point from O7 in a given corridor to determine which pairs of these points
are dual. Finally, in §8 we study various curves of period 2 and 4 points that are
given by equations involving Chebyshev polynomials of the second kind. Duality is
determined for such curves also.

§2 PRELIMINARIES

In this section we will describe general trace maps, some of their properties, and
the family of trace maps that we study.

Let Fy = (z1,22) be a free group of rank 2 and let o; € Aut(F»),i = 1,2, be
defined by

01($1) = T1Z2, Ul(ﬁz) = I2;
0'2(1'1) =T, O'Q(QCQ) :SUIIZL'Q.

One can show that o1, 09 satisfy the braid relation oy0207 = 020105. We thus
have a representation of the braid group Bz [Bi]. Note [MKS, Theorem 3.9] that
any element of Aut(Fy) fixes the commutator z;zox7 ‘25 (up to conjugacy).

Now suppose that the z;,i = 1,2, are represented by elements of SL(2,C), that
we also denote by x;. Let

x = trace(z1)/2, y=trace(z2)/2, =z = trace(xix2)/2.
Recall the standard trace identities for such 2 x 2 matrices:
trace(A™') = trace(A), trace(l) = 2,
trace(AB) = trace(A)trace(B) — trace(AB™!).
Using these relations one can prove the well-known fact that if w is a word in

x1,x9, 7t 25", then trace(w) is an integer polynomial in z,v, z. Thus we obtain
the following induced action of 01,09 on Q|z,y, z]:

0'1(33, Y, Z) = (Za Y, 22/2 - .13)
(21) UQ(ZE,y,Z) = (I72Iy727y)'

Now because this action is obtained using the action on traces one should expect
that this only guarantees an action of Bj if we consider the action on the trace ring
[Ma], this being the quotient of Q[z,y, z] by all generic trace relations. In terms of
the generators x, y, z this is the quotient of Q[z,y, z] by the ideal generated by the
element £ — 1 where
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FIGURE 1. Period 2 curves in two corridors for «aqs.
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the element E — 1 being the trace of the element xlxga:l_lxgl (which, as we noted
above, is Aut(F3)-invariant, up to conjugacy). However this turns out to be un-
necessary as the action of 01,09 on Q[z,y, z|] is actually a representation of Bs in
Aut(Qlz,y, z]). This result is related to the fact that for any n > 1 the braid group
B,, [Bi] acts on a polynomial algebra with kernel the centre of B,, [Ma].

In general any automorphism ¢ : Fy, — F, will give rise to an automorphism of
the trace ring and so determine an invertible map R?® — R3. Such maps are called
trace maps and have been studied by various authors [RB1, RB2, ABG, Ig, BR,
LW, PWW]. For example in [RB1] the map (z,y,2) — (y,z,2yz — z) is studied,
and information is given about curves of fixed points and period doubling.

The action (2.1) of B3 on Q[z,v, 2] gives rise to an action of Bz on R? if we
think of x,y, 2 as being the usual coordinate functions for R®. We will write this
action of & € B3 on (a,b,c) € R? on the right: (a,b,c)a; this action is also the
corresponding action by Nielsen transformations [MKS].

One checks that the action of Bs fixes the function E = E(xz,y, z) of (2.2) and
so each level set

E; = {(a,b,c) € R3|E(a,b,c) =t}

is invariant under the action. The level set F; is distinguished and has been drawn
by many authors [Go, RB1, RB2]. The set

vV ={(1,1,1),(-1,-1,1),(-1,1,-1),(1, -1, 1)} C B

consists of the four singular points of F. Further, the six line segments joining these
points are contained in F; and there is a unique component of F \ V' whose closure
is compact. In fact this closure is a topological 2-sphere that separates R? into two
components, the closure of one of these components is a 3-ball T that we call a
“curvilinear tetrahedron”. One can check that 7 C [—1,1]% and that 7 N9[—1,1]?
is the above mentioned set of six line segments.

In [HM] we studied the fixed points of the diffeomorphisms

an = ooy R 5 R n > 0,4|n.

We were especially interested in those fixed points which lie on 7. For n even these
fixed points include the points V. If we ignore the points of V' for the moment, then,
as pointed out in [RB1, p. 839], a consequence of the implicit function theorem is
that the fixed points of a,, on T will belong to curves of fixed points. In [HM] we
described the fixed points on 97 ; we then found the curves of fixed points which
contain them and discovered which pairs of fixed points on 07 are joined by these
curves. We said that such a pair of fixed points is a,-dual.

Let T? = R?/Z? denote the 2-torus. Then the open two-manifold 97 \ V is
covered by the restriction of the map

I:T? = 0T, (01,02) — (cos(2mby), cos(276s), cos(2m (6, + 62))).

Note that II(6y,602) = II(—(01,02)). The map II is a branched double cover,
branched over the four points V.

The action of Bs on 97 actually comes from an action of B3 on T2, the action
being determined by the homomorphism

1 1 1 0
@B3*>SL(2,Z), 0'1’—)<0 1), O’QP—><_1 1>
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01

For o € B3, 0 = <
02

) € T? the maps II, ® are related as follows [HM]:

(2.3) (I1f)a = TI(B(a) ().

The fixed points of & on T \ V are of two types. First note that if II(0) €
AT \'V C R? is fixed by «, then by (2.3) we must have ®(a)(f) = +60. A fixed
point TI(6) is called a-preserving, or just preserving if a is understood, if we have
®(a)(0) = 0; otherwise it is called reversing.

83 CURVES OF FIXED POINTS

In this section we recall the results of [HM] that describe the curves of fixed
points for a,.

The fixed points on T and the fixed curves that contain them were shown to
be in three families:

(F1) straight line curves;
(F2) curves in the planes x = +y;
(F3) curves not meeting the planes z = +y;

We now say a little about each of these cases:

(F1) The straight line cases. For N € N let Ky C SL(2,Z) denote the
congruence N subgroup of SL(2,Z), namely the kernel of the homomorphism
SL(2,Z) — SL(2,Z/NZ). Note that ®(a,) = ®(o70y) € K,. For k,m € Z
and any § € Bs such that ®(8) € K, it follows that any point II(k/n,m/n) is a
preserving fixed point of 5. In particular, this is the case for «,,.

Now we showed [HM, Lemma 2.3] that for most integer values of k, m,n the
vertical line

(cos(2mk/n), cos(2mm/n), 2)

is a line of fixed points for «,, which contains II(k/n,m/n) and is not tangential
to OT there. Thus this line meets 0T at another point, which happens to be
II(k/n,—m/n). Thus II(k/n,m/n) and (k/n, —m/n) are a,-dual.

Let X,Y,Z C R? denote the z-axis, the y-axis and the z-axis. Now it is easily
checked that any point p € X UY U Z is fixed by each o,i = 1,2. Thus if n is a
multiple of 4, then each of X,Y, Z is a line of fixed points for «,, which intersects
0T in ap-dual points (£1,0,0), (0,£1,0), (0,0, £1).

(F2) The = = £y cases. We now consider the fixed points p = (a,b,c) € 0T
where a = +b. The two cases are similar and so we only describe the a = b case.
(In fact the map (x,y,z) — (—z,y, —2) is centralised by «,, when n is even; see
Lemma 4.4 below).

First note that some of the straight line curves of type (F1) are in these planes.
The intersection of 7 and the plane z = y is a topological disc, denoted by P, in
the = y plane bounded by the line z = 1 and the parabola z = 222 — 1. In this
case we showed that any such fixed point (if it is not on a vertical line of fixed
points as in case (F1)) is on a curve with equation

v (@) = (@,2,2(1+ Un—2())/Un-1(2)).
Here Ug(x) is the Chebyshev polynomial of the second kind.
We draw these curves as they lie in P in Figure 2 for the case n = 20; we
have shown the components of the curve ¥ (x) as a solid curve and we have also
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indicated some dashed vertical lines of fixed points of type (F1) described above.
We also indicate some solid vertical lines that are symmetric (see §5).
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FIGURE 2. Curves of fixed points in P for asp;
dashed vertical lines are also fixed. Solid vertical lines are symmetric lines for aag.

(F3) Curves not meeting the planes x = +y. We showed [HM, §8§5,6] that
all curves of fixed points which are not completely contained in the planes x = +y
are determined by a single polynomial K, (x,y). Further any such curve can only
intersect the planes x = +y at fixed points of type (F1) or type (F2) and these are
bifurcation points. A type (F3) curve is such a curve that does not intersect the
planes z = 4y at all. These will not be relevant to us in this paper.

64 CHEBYSHEV POLYNOMIALS AND THE ACTION OF a,
Define the Chebyshev polynomials U, (z) of the second kind [Ri] by
(4.1) U_1(z) =0; Up(x) =1; Ui(z) = 2z; Up(x) = 22U,—1(x) — Up—a(z).
We will often need the following properties of these Chebyshev polynomials:

Lemma 4.1. [HM, Proposition 2.6] For m € N we have
(1) U (=) = (=1)"Upn ().
(i1) Upn(l) =m + 1.
(i) by (0) = 0;
(iv) Uy (0) = (—~1)™2(m + 1),
(v) Upn(=1) = (-1)"™(m + 1).
(vi) U2,_1(x) — Up(2)Upp—2(z) = 1.
(vii) U2, (x) — 22Up—1(2)Up (z) + UZ_1(2) = 1.
(viii) Usm () = U2 (2) — U2_, (2).
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(iz) Ugpm—1(2) = 2Up () Upy—1(x) — 22U2,_; ().

(z) For all even n > 1 we have ged(1 + Uy, —2(7),Up—1(x)) = Upja—1(7).
(2i) Up (1) = 2("5%).

The Chebyshev polynomials of the first kind are defined as follows:

T 1(z) =0; To(x) =1; Ti(x) = x; Tp(x) = 22T —1(x) — Th—2(x).

Lemma 4.2. [Ri] U} (z) = ("H)T";lz(fi_wU"(m.

Lemma 4.3. [HM, Lemma 2.1] If k € Z, then
k

0 0 1 x
0 1 0 y | =1y |ot;
-1 0 2y z z
10 0\"/=z x
0 22z -1 Y = Y 0’2“.
0 1 0 z z
Denote the two matrices above by Ny = Ni(y), No = Nao(x). Then we have:

—Uk—2(y) 0 Uk-1(y)

Ny = 0 1 0 ;
—Uk-1(y) 0 Uk(y)
1 0

NY=1| 0 Uilx) -Upi()
0 Uk—l LB) ka_g(sc)

Lemma 4.4. [HM, Proposition 2.5] (i) The involutive automorphism
SIQ[J?,:U,Z] _>Q[l3y7z]7 (mvyvz) = (—x,y,—z)

centralises any o € {(o1,02), that is aS = Sa. In particular, if n is even, then S
centralises o,.
(ii) The involutive automorphism

R : Q[xﬂ y? Z] _> Q[x7 y? Z]7 (£r7 y7 Z) '_> (y7x7 Z)

conjugates o1 to 051. The map R reverse centralises o, so that ap, R = Ra, L.
(#ii) The involutive automorphism

T= (SR)Z : Q[Iaywz} - Q[x,y,z], (z,y,z) = (—I, —y,z)

commutes with 02 and with o3. In particular, if n is even, then T centralises a,.

We note that the involution S maps the x = y plane bijectively onto the z = —y
plane. Lemma 4.4 (i) thus determines a correspondence between fixed and period
2 points in the respective planes. Thus it suffices for us to study P. Also Lemma
4.4 (iii) shows that the fixed and period 2 points in P are symmetric relative to Z,
as seen in Figure 2.

Lemma 4.5. [HM, Corollary 2.2] For alln € N and (z,y,2)T € R® we have:

T —2Un—2(y) + 2Un-1(y)
Yy Qp = Un(x*)y - Unfl(x*)[_xUnfl(y) + zUn(y)]
z Un-1(2*)y = Up—2(2*)[=2Un—1(y) + 2Un(y)]

Here o* = —aU,_2(y) + 2Un-1(y).
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In particular, if (x,y,2)" € R® is a fived point of a,, and U,_1(y) # 0, then we
must have

= .’L‘(l + Un72< ))/Unfl(

Lemma 4.6. The point (z,z,1?), where x = cos 27” is on the curve y*(t) =

(.8, 120Ny of fized points for au,.

Proof In [HM, Lemma 3.2 (i)] we showed that v* () is a curve of fixed points for
Q.

Let © = cos 222, We need to show that %{&@ = 2% Now U,_1(z) =
bmn2 sin(n—l)% ! h 27
wn 0 =0, and U, _o(z) = s e —1. Further, T, (z) = cosn=2 = 1, and

T—1(z) = cos(n — 1)22L = 2. Using Lemma 4.2 we obtain

21+ Upa(@) _ 2g 1+ Usoa(2))]
Un—1(z) LU, 1 (2)
2l(n = 1)T-1(2) — 2Up_s(2)]
nT,(z) — aU,—1(x)
2l(n = VT, (2) + 7]
nT,(x)

as required. O

85 (GENERAL RESULTS ABOUT CURVES OF PERIOD 2 POINTS IN P
Theorem 5.1. Let p € P. Then p € PN (P)ay, if and only if (p)a? = p.

Proof Let p = (x,z,z) € P and assume that p € PN (P)a, From Lemma 4.3 we
have:

(x,2,2)a, = (v1,v2,v3)
= (—2Up—_ao(x) + 2Up,—1(x),
Un(@®)x — Up1 (%) (=Up-1(z)z + 2U, (1)),
(5.1) 2Up—1(2") = Up—o(2*)(=Up—1(z)x 4+ 2U,(2))).
Here z* = v1 = —zU,—2(x) + 2Up—1(z). From the same result we also have:

(.’L’, (E,Z)O[,r_ll = (’LLl,’LLQ, U3)

= (2Un(z") = Up-1(2") (—2Upn-1(z) + 2Un(2)),
— 22U, _ 2(:5) 2Up—1(x),
(5.2) 2Up-1(z") — Un—2( ) (—a2Up-1(z) + 2Un(2))).

From p € P N (P)a, we see that (p)a,, ' € P. This shows that u; = up. But
we have z* = v; = ug, and from (5.1) and (5.2) we see that va = uy, so that
U] = Uy = V] = Ug. It is also clear from (5.1) and (5.2) that us = vs, so that
(2, 2) o, = (x T, 2)a; b, giving (p)a? = p.

Now if (p)a2 =p for p = (z,2,2) € P, then we have (p)a,, = (p)a;, 1. Equating
the entries in (5.1) and (5.2) we see that v1 = uy,v2 = u2,v3 = us, but we also
have v; = ug, so that u3 = ug = v = vy, showing that (p)a,, € P. O
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1 n
—n 1-—n?
has trace 2 —n? < —2, so each point of (9P \ V) NFix(a?2) is a hyperbolic periodic
point of ay,|sp and, by the Implicit Function Theorem (as noted in [RB1, p. 839]),
belongs to a smooth curve in Fix(a?) that is transverse there to 9T .

2. Counsider G : P — R,G(z,x,2) := vy — vy where (z,z,2)a, = (v1,v2,03).
Then {G = 0} = P N (P)a,. From Algebraic Geometry, see §2.3 of [W], G = 0
on a finite union of curves, each parametrised by a Puiseux series, so P N (P)a,
is certainly a union of smooth curves, possibly with cusps (and there may also be
some isolated points). Now G = 0 at each point p € 9P N (IP)a, = IP NFix(a?).
These points are parametrised by points of the straight line joining (0,0) to (1,1)
or (1,—1) that are mapped by M, to one of these lines (mod Z?), and we note
that the images of these lines do cross the lines there. Thus G|OP changes sign
at each point of 9P N (OP)«a,. The component of {G = 0} to which p belongs
must meet P in at least one more point since otherwise it would not be able to
separate the points where G > 0 near p from those where G < 0. We say that p
is dual to ¢ € OP N Fix(a?) if p and ¢ are endpoints of the intersection with P of
a smooth curve in Fix(a?2). We shall discover which of the various points of 9P in
this component p is dual to in Theorem 7.5.

Remarks 1. In torus coordinates «,, maps 9P by M, = ) which

86 SYMMETRIC CURVES OF PERIOD 2 POINTS IN P

We call a point (z,7,2) € R? a symmetric point (for ) if (x,2,2)a, =
(—x,—x,2). Such a point is a point of period 2 by Lemma 4.4 (iii).

Symmetric points (and curves of such points) are determined in the following
result, which also determines duality for symmetric points.

Proposition 6.1. (i) The curve v~ (z) = (a:,x, %) is fived by o2,,.
km

(ii) The vertical line (z,x,2),z = cos XX is also fized by af, when k is odd.
(iii) The curves in (i) and (ii) are exactly the symmetric curves.
(iv) The symmetric curves v~ (z) meet P in components that intersect 0T when-

ever © = cos 2w, where

k k
=" andb=—" fork odd.
2(4n—2) " 2{an 1 2) o7k odd

The points with denominator 2(4n — 2) are on 8P, while the points with denomi-
nator 2(4n + 2) are on 0~ P. See Figure 3.

(v) For each odd k, the curve v~ (x) joining the points of OP where 6 = m
and 0 = m, meets the given vertical line (see (i) above) at (v,x,2%),r =
cos 2;“7”. This is the point on the line where E = x? + 22 4+ 22 — 2222 takes its
minimum value.

Proof Let Uy, = Uy ().
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(i) Now au, = o{"03™ and so by Lemma 4.3 we have

Uz s ~Usn—2 0 Usp z

(z, 2, == gin = 0 1 0 T
U2n—1 U 0 U zUzn—2
4n—1 4n Usn—1

xUzpn 2Usn 1
_$U4n_2 + TILJZ?L—I”
X

zUszn—2Usn
—2Usp—1 + Uzn—1

(6.1)

Before proceeding to the action of 03" we simplify (6.1). For the first entry of (6.1)
we have, using Lemma 4.1 :

2Usn—2Usn—1  —2Uspn_2Usp_1 + 2Us2,_2Usn_1

—xUsp—2+ =
n=2 Usap—1 Uan—1
 —aUsy 1 (U3, — U3, o) 4+ xUsp—2(2U2,Usp 1 — 22U3, ;)
B U2n—1

a)‘(—UQQn,1 + U22n72 + 2U2nU2n,2 — 2$U2n,1U2n,2>
x(fUQQn_l + U22n—2 + 2(2£L'U2n_1 — UQn_Q)UQn_Q — QZL'UQn_lUQn_Q)
_U22n71 - U22n72 + 2$U2n71U2n72>

|
8

= -z,

where the last equality is given by Lemma 4.1 (vii).
For the third entry of (6.1) we have:

2Usp—o2Usn,  —xUspn—1Uszp—1 + 2Us,—2Usp
—2Uspn—1 + =
U2n—1 U2n—1

—2(2UnUszp—1 — 22U3,_1)Usn—1 + U2 (U3, — U3, 1)

Usn—1
Now substitute Us,, = 22Us,,_1 —Us,_o into this and the resulting equation factors:

],‘(Ugn_g — 2.’L‘U2n_1)(U22n_1 — 2xU2n—1U2n—2 + U22n—2)
U2n71

The last factor of the numerator is 1 by Lemma 4.1 (vii). Thus this expression is

2(Ugp—2 — 22U2,—1) _ tUzn—2 92
Usp—1 Usp—1 '

Thus (6.1) is equal to

—x
€T

zUsn—2 _ 212
2n—1

We now act on this by 03", again using Lemma 4.3, where we recall that
Up(—x) = —Ug(x) if k is odd and Uy (—=z) = Ug(z) if not:
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- 1 0 0 -z
4
o T o =10 U Usn—1 o T
ZU2n—-2 2 _ _ TU2n—-2 2
Uzn—1 2z 0 Uan—1 Usn—2 Uzn—1 2z
—X
U U, xUsn—2 _ 2 2
= 2Usn + Usn1 | 7, T
zUzn—2 2
—2Usn—1 — Usn—2 (m -2z )

For the second entry we substitute for Uy, Ug,—1 (using Lemma 4.1) and Uy, =
22Uz, -1 — Usp—o and find that the resulting expression becomes:
—J,‘(Ugn_l —2zxUsy—1Usp—o + U22n_2) = —x.

Doing the same thing for the third entry we obtain mUU27""

on—1 7

xU2n—2(‘T)) 4n _4n ( xUQTL—Q(‘T)>
z,x, ——= ooy = | —z,—1, —F ).
( Uzp—1(2) v Uszp—1(x)

is an even function, it follows that (o{"c3")? fixes (m, x M)

so that we now have

:EUgn_g(I)
Uznfl(m)
and we have proved (i).

(ii) Now, if k is odd and = = cos 276,60 = k then Utp—1(z) = S1 Snml — (). We

Since s T 1 ()

8n? sin 276
also have Uy, _o(z) = W =1 and Uyy(z) = w = —1, so that, by
Lemma 4.3 we have
-1 0 0 1 0 0
N*=| 0 1 0 |, N =0 -1 0 [,
0 0 -1 0 0 -1
so that
-1 0 0
Ny"N}" = 0 -1 0
0o 0 1

Thus (z,z, z)as, = (—x,—z, 2) and so
(z,z,2)a3, = (2,2, 2).

These vertical lines are drawn solid in Figure 2 for n = 20.
(iii) From Lemma 4.5 we see that a symmetric point (z,z,2)T for ay, must

satisfy —xz = 2* = —aUgp—2(x) + 2Uspn—1(x), so that using Lemma 4.1 we have:
H = —;v(l — U4n72)
U4n—1

—z(1 U3, + U3, )
2U2,Usp—1 — 22U2,
—2(U3,_5 — 22U2n-1U2n—2 + U3, )
2U2p-1(Uzn, — 2U2n—1)
- xUQn,Q
Uzn—1
This shows that a symmetric point with Uay,—1(2) # 0 must be vy~ (z). If Ugp—1(x) =

0, then = = cos 27 where sin(2n276) = 0; this gives 6 = 4%, however for k even
these vertical lines are fixed, while if k is odd they are symmetric by (ii).
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(iv) Let z = % Then the expression E(z, 7, 2)—1 = 22+ 2% +22 - 22221
factors as )
(Uzn—1 — 2U2,—2)(22°U2p—1 — Uzp—1 — 2U2,—2)

U22n—1 .
Substituting Uy, = % (where x = cos 02m) the first factor reduces to
sin(2nf2m) — cos 02w sin(2n — 1)027

(6.2)

= cos(2n — 1)627.
00 cos(2n — 1)027
The solutions in this case are 6 = 4(2:7_1), for odd k.

Now when 6 = ﬁ with odd k and = = cos(#27), then we have

Lk . (2n—1)km
2Usn—g  COS(5mp—ry) sin(S5aa=1) )
Z(J)) = U. = : 2nkm
2n—1 sin( SonoT) )

Now if we put 6 = m into (6.2), then the right hand side is 0 and the left

hand side shows that sin(2nf27) — cos#2msin(2n — 1)027 = 0 and so the above
expression for z(z) is 1. Thus these points are on 97 P.
Similarly, the second factor is

2 cos? 027 sin(2nf27) — sin(2nf2m) — cos(627) sin(2n — 1)627)

sin 627
_ 2cos? 02w sin(2n02m) — sin(2nh27) — cos(62m)(sin 2nH2m cos 02 — sin H27 cos(2n)02m)
B sin 021
_sin2nf2m — cos 027 sin 027 cos(2n)f2m — cos? 02 sin 2nf2w
B sin 627
_ sin® 027 sin 2n627 — cos 627 sin 62 cos(2n) 027
B sin 62

= —cos(2n + 1)027.

The solutions in this case are 6 = m, for odd k.

One now shows that z(z) = cos(2027) if 0 = m, for odd k and x = cos 62,
so that these points are on 0~ P.
(v) If k is odd and z = cos 4, then

2Usp—a(x) _ cos i sin CoptT

o) = 2 = Pa
2n71($) sin =5
cos ’Z—Z (Sin %” cos Z—Z — cos %” sin %)

km
2 2
=cos® — = z°.
4n
That this is the point on the vertical line where z? + x2 + 22 — 222z takes its
minimum value was shown in [HM, Lemma 2.8]. O

From Proposition 6.1 we see that the curve

xUQn_Q(Jj)

Usn_1(z)’

is a curve of period two points for ay, that has the property that (z,z,2)as, =
(—x,—x,z). Thus we have 7~ (x)au, # v~ (x), whenever = # 0.

’}/_(Z‘) = (x,x,z), z = Z(JT) =
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[uniy

0.5 1

FIGURE 3. Symmetric curves and fixed curves for asg

We illustrate this in Figure 3 for n = 20. Compare Figure 3 with Figure 2.
Let " (z) = (z,, W) be the curve of fixed points of ay,, as given in
Lemma 4.6. From the first statement of [HM, Proposition 3.5] we see that the
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points of ¥y (z) N IP are

coskiw, for k=0,2,4,...,4n+ 2;
an + 2
km
—, fi =0,2,4,...,4n — 2.
c0s4n_2, or k=0,2,4,...,4n

It follows that the points of v~ (x) NP alternate with the points of v (z) NP
on each of 9tP and - P. Since for x # 0 the points of v~ (z) are not fixed
and the points of y¥(x) are fixed by ay, we see that the curves y*(x) and v~ ()
are disjoint. Now from the above we see that between consecutive fixed curves of
v+ (z) NP there are exactly two points of v~ (x) N dP. These thus must be dual
points. This gives most of

Theorem 6.2. For1 < k < 2n—3 odd, the points with torus coordinates (ﬁ, —ﬁ
and (ﬁ_ﬂ, ﬁ) are dual symmetric points for cuyy,.
The points with coordinates (ZZ;;, iZ;é) d (ZZI;, iZig) are dual symmetric

points for ay,. They are joined by a symmetric curve of points that passes through
the point (0,0, 5= ).

) 2n
The points with coordinates (1 — 2, —1+ 2= and (1 — TIZ_Q, 1-— Wﬁ-z) are
dual when 1 <k <2n—3 and k s odd.

Proof We need only be concerned about the second paragraph. Clearly these points
are dual. Now the curve v~ (z) goes through the point (0,0, zp), where

 falsnoa(z) _ (Usnos(x) + o Bntllnan elins()
0= = .
L Uppi () 2nT2n<wg>;frlfzm<x> loco
Letting z go to zero gives IJ;;%;(% = ﬁ Here we use that fact that U,(0) =
T,(0) = (=1)% if n is even, and U, (0) = T},(0) = 0 if n is odd. O

We note that this means that the trace of the Jacobian of ay, at the fixed point
(0,0,29)" must be 1 —1 —1= —1.

87 DUALITY, STALAGMITES, STALACTITES AND COLUMNS

Our aim in this section is to determine the dual pairing of all the points fixed by
a? in P. We emphasize that we will be assuming 4|n. First we collect the results
already proved.

Proposition 7.1. (i) For k even in {1,...,n — 1} the vertical line
(cos(2mk/(2n)), cos(2mk/(2n)), z) consists of points fized by cu,.

(i) For k odd in {1,...,n—1} the vertical line (cos(2rwk/(2n)), cos(2mk/(2n)), z)
consists of symmetric points fived by o2. Recall that (z,x,2) is called symmetric
if (x,2,2)a, = (—x,—x,2) and then it has period 2 because also (—x, —x, z), =
(z,z,2).

(iii) The curve vt (z) = (z,2,2(1 + Up—2(x))/Un—1(x)) consists of fized points
and, for k even in {1,...,n/2—2}, it joins the dual pair corresponding to the param-
eters k/(2(n+2)) in =P and k/(2(n—2)) in TP and the dual pair corresponding
to the parameters 1/2—k/(2(n+2)) in =P and 1/2—k/(2(n—2)) in 0T P; it also
joins the dual pair in 0~ P corresponding to the parameters (n/2)/(2(n+2)), (n/2+
2)/(2(n+2)) (which are 1/4£1/(2(n+2))).

)
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(iv) The curve v~ (z) = (x,2,2Uy 2-2(x) /Uy 2—1(x)) consists of symmetric
points and, for k odd in {1,...,n/2 — 2}, it joins the dual pair corresponding to
the parameters k/(2(n + 2)) in O~P and k/(2(n — 2)) in OTP and their images
which are the dual pair corresponding to the parameters 1/2 —k/(2(n+2)) in 0~ P
and 1/2 —k/(2(n —2)) in 0TP; also it joins the dual pair in O~ P with parameters
(n/2-1)/(2(n+2)) and (n/2+3)/(2(n+2)) (which are 1/4+1/(n+ 2)).

Proof (i) was Lemma 2.12 of [HM] and (iii) was Lemma 3.5 of [HM]; (ii) and (iv)

were Proposition 6.1 and Theorem 6.2 above. (]

We divide P into n distinct (open) vertical corridors separated by the vertical
lines of fixed and symmetric points of Proposition 7.1 (i) and (ii). For k € Z we
specify the kth corridor by

Cy := {(cos(2m8),cos(270),z) € P : k/(2n) < 0 < (k+1)/(2n)}
and note that Copip = Cp = C_p—1. We let Dy = (k/(2n),(k + 1)/(2n))
parametrise the top and bottom edges
CH=C,notP, C, :=CyNI™ P
of C}, using
0 — (cos(2m0), cos(—270), 1), (cos(2mh), cos(278), cos(47h)).

By studying which corridor contains the image of a point of period 2 we shall
determine the duality. One point in 7P may be dual to another there; then we
call the curve of period 2 points joining them a stalactite. If it is dual to a point
of 7P, then we call the curve a column. If one point of 9~ P is dual to another,
then we call such a curve a stalagmite.

We will show that the image under «, of a stalagmite or a stalactite is a column,
and that all columns are either (i) curves of fixed points; (ii) symmetric curves of
period 2; or (iii) have images under «,, that are either a stalagmite or a stalactite.

Now «,, acts on C,j and C, by multiplying the parameter in Dy, by (n —1) and
(n + 1) respectively, as we see from the first coordinate (or its negative) of

—1n 1—nn2)<—99>:_< (13?71—1)52)9)’
(
<—1n 1—nn2)(z):(<l(—ni—%e>'

The points of 97PN (07P)a,, ! and 0P N (0~ P)a,, ! have parameters
{i/(n(n=2)):0<j <n(n=-2)/2}, {j/(n*=2):0<j < (n*=2)/2}
In fact

(o m) ()= () oo (%)

while

(ot ) (e )= (5 ) vam (G673

Similarly the points of =P N (0 P)a,; !t and O~ PN (0~ P)a;, ! have parameters

n

{3/(n* =2):0<j < (n*—2)/2}, {j/(n(n+2)):0<j<n(n+2)/2}.
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For 0 < k < n the set of parameters of points in C;" N (9*P)a;, ! is
{00 = (k(n/2=1) +j)/(n(n —2)) : 1 < j <n/2 -2},
while the set of parameters of points in C;, N (9~ P)a, ! is
(055 = (k(n/2+ 1) + )/ (n(n+2)): 1< j < n/f2}.
Thus 9,?? is the parameter of the jth point of C,j that is mapped by «,, from
OTP to OTP. Notice that putting 7 = 0 or n/2 — 1 in H,j;r (or putting j = 0 or
n/2+1in 9,;;) would give a fixed or symmetric point as in Proposition 7.1 (i) or

(ii) and these are in the boundary of the corridor Cy.
Also, for 0 < k < n, the set of parameters of points in C;f N (0~ P)a,, ! is

{057 = (kn/2+j)/(n* —2): 0 < j < n/2},
while the set of parameters of points in C;, N (97P)a,, ! is similarly
{057 = (kn/2+j)/(n* = 2) : 0 < j < n/2},

+- —9 Tt 1
n—1,n/2—1 " “n—-1n/2—-1 " 2°

—

except that we exclude 93‘7 o =0y, (T =0and ¢

Proposition 7.2. If0 <k <n and k is even then
(i) o, maps the point corresponding to 9;{; to a point in Coj_j = Ci_gj—1 for
1<j<n/2-2.
(i) c, maps the point corresponding to 9,‘:]— to a point in Coj_p = Ci_gj_1 if
0<j<kandin Coj_p_1 ifk <j<n/2.
(i) o, maps the point corresponding to 9,;; to a point in Ciyo; if 0 < j <n/2—k
and in Cryoj41 ifn/2 —k <j<n/2.
(iv) av, maps the point corresponding to 0y ; to apoint in Cyiajq for1 < j < n/2.
(v) If k is odd, then n should be added to the suffiz of the image corridor Caj_j etc
in each of cases (i) to (iv).

We remark that, for fixed even k € {0,...,n — 1}, the images of the points
92‘; (for 1 < j < n/2 —2) are equally spaced and so they lie in corridors Cy;_g
that (with the initial and final cases of C_j, C,_r_2) alternate in the sequence

C_ky...,C_kyn—2. Notice that, in Cy,...,C,_1, the images of our points are in
Cyforgq=k—-3,k-5,...,3,1,0,2,...,k—2,k,...,n — k — 4, which means in
(7.1) {Co,C1, ..., Cr—3,Cr—2,Ck,Crya,...,Cpnp—6,Crp—a}.

However, the equally spaced images of the points 9,?; (for 0 < j < mn/2) are trans-
lated by a distance that depends on k so they can change from Cy;_j to Coj_r_1
as j passes the value k. Thus these images lie in C, for

g=k—1,k=3,....31,0,2,. .. k=2 kk+1,k+3,....n—k—3,
which means in
{Co,C1, ..., Cry Cry1,Cry3,Crysy .., Ci_ 5, Cr—3}.

Notice that there are two more corridors listed here than in (7.1) because j takes
two more values in 92‘; than in 0,':;

Proof We shall study the effect of multiplying by (n — 1) and (n + 1). For (i)
(n = D(k(n/2 = 1) +j)/(n(n = 2)) = k/2 + (2] = k)/(2n) + j/(n(n - 2))
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gives a point in Cy;_j, since, when k is even, k/2 is an integer and has no effect.
For (ii)
(n=1)(kn/2+j)/(n* =2) = k/2+[(2j — k)n/2+ (k = j)]/(n* - 2)
k/2+((25 —k—1)n/2+ (n/2+k—j)]/(n® - 2)

gives a point in Cy;_j if K —j > 0 and in Cy;_,_1 if K — j < 0. For (iii)
(n+1)(kn/2+35)/(n*—=2) = k/2+ ((k+2j)n/2+k+75)/(n*—2)

= k/2+((k+2j+1)n/2+ (k+j—n/2)/(n*—2)
gives a point in Cyio; if 0 < j <n/2—Fk and in Cyyoj41 if n/2—k < j <n/2. For
(iv)
(n+1)(k(n/24+1)+7)/(n(n+2)) = k/24+((k+25—1)/(2n)+(n/2+1—j))/(n(n+2))

gives a point of Cyy2;_1. For (v) we note that if k is odd then k/2 contributes 1,

which adds n to the corridor number. O

Now we shall study duality for period 2 points in C}, and we will refer to these
points by their parameter 92‘? etc. It will suffice for us to consider the cases
0 < k < n/2 since the duality in C, s,...,Cy_1 is equivalent to duality in these
corridors under (z,,2) — (—z,—x,2) or § — 3 — 0. First we discuss when the
curve joining two dual points can cross a vertical line of fixed or symmetric points
because this will guide us on whether a point of Fix(a?) N P must be dual to
another in the same corridor.

In this paragraph we assemble information from Proposition 7.1 about various
curves crossing one or more fixed or symmetric vertical lines. Among the points of
period 2 in Uz;é C', we have already seen in Proposition 7.1 (iii) and (iv) that, for
0<k<n/2—1 even,

Ok = k/(2(n —2)) = (kn/2)/(n(n - 2))
is dual to
k—1mj2—kr1 = B/ (2(n+2)) = (kn/2)/(n(n + 2))

with both points fixed, that 92‘11’,6“ is dual to 9,;;/2_k with both points symmet-
ric, and that the fixed or symmetric curve joining these points crosses the fixed
or symmetric (respectively) vertical line at the boundary of Cj. Proposition 7.1
(iii) and (iv) say also that the fixed points 0,/2-1,1 and 0, are dual and the
curve of fixed points joining them crosses the fixed vertical line § = 1/4 (actually
at the origin (x,z,z) = (0,0,0)). Moreover the symmetric points 0, /2—2, and
0;/_2 +1n/2—1 BT€ dual and the symmetric curve joining them crosses the fixed ver-
tical line # = 1/4 and the symmetric vertical lines § = 1/4 + 1/(2n). See Figure
3.

Proposition 7.3. The curve of period 2 points joining 9;/;_2 5 and 9;/;+1 nj2—1
is the only such curve to cross both edges of any corridor.

Proof If any curve in Fix(a?2) crosses a fixed vertical line at a point r; and then an
adjacent symmetric vertical line at ro then its image reaches from rq to (r2)ay, and,
if 7 does not have 6 = 1/4, meets at least a fixed and a symmetric vertical line
between these points and then those intersections cannot be the image of points
between r; and ro. Having § = 1/4 for r is therefore the only way that the
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curve joining two points of period 2 can cross two adjacent vertical lines (the edges
of some corridor). As there is no other symmetric point in 02/2_2 U 05/2_2 the

curve joining 9;/7272 o and 9n/2+1 n/2-1 is the only one to cross both edges of any
corridor. O
In the situation n = 12, Figure 4 shows the unique curve of period 2 points that

crosses the two central corridors. This curve crosses the z-axis at approximately
x = +0.3.

FIGURE 4. Central corridors for aqs.

Proposition 7.4. If0 < k < n/2, then the only curves of period 2 points that
cross an edge of Cy are:

(i) the curves of fized or symmetric points in Proposition 7.1 (iii) and (iv), with
the latter including the curve in Proposition 7.3.
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(ii) the curve of period 2 points joining the points corresponding to 0;0_ and

—+
k—1n/2—k"
Also, the points corresponding to 6;; and 9;’3 are dual.

Proof If there is a path in Fix(a2) from p € (Fix(a2) \ Fix(ay,)) N (C U C})
that meets the fized vertical edge of Cy first at a point r, say, then «,, takes this
part of the curve to a curve from (p)a, to r that does not meet the edge of any
corridor. Assume that k is even. Then (p)a,, is in the corridor Cj_1 adjacent to
C (or possibly in Cf itself) and, by Proposition 7.2, this happens precisely with
9;07 mapped to 9,;;)71/27,6 or with 9,1; mapped to G;’g. Now Ql:rl’n/%k must be
dual to 9,::6 by a curve that has non-zero algebraic intersection number with the
fixed edge of Cj and is mapped to the reverse of itself. (It could not be dual to
9;; or 9,;3 because the curve joining them would map to a curve joining points
in C} and so having algebraic intersection number 0 with that fixed edge.) Then
9;‘; and 9,;3' are dual by a curve that is sent to its reverse. From the order of the
points along 9P the curve in Fix(a?2) joining 9,’;; and 9,;3' must cross the curve

in Fix(a,) joining Gzz to 9k—1,n/2—k—1 (and then there is a path in Fix(a?2) from
9;; or 9,;3 to the fixed edge following part of its curve and then part of that curve
of fixed points).

If k£ is odd a similar discussion shows that 97{78, 9;j17n/2—k and 9;;, 9,;3 are dual
pairs connected in Fix(a?) to the symmetric edge of Cy, and the curve joining each

of these pairs is mapped to the curve symmetric to it. (Il

Figure 1 shows the three curves described here joining the points corresponding
to 9,';: and 91;—_1,71/2—k+1’ 9,‘:’0_ and 91;—+1,n/2—k7 and HH and 9,;3' (for k =n/2 —
2,n = 12). They are the two curves that cross the central vertical line and the one
that crosses the lower of these two.

Now we can complete the determination of the dual pairing.

Theorem 7.5. Fiz k in {0,...,n/2 —1}.

(i) For 0 < j < k, 92‘;’ is dual to 0,':]_ These pairs give k — 1 stalactites and they
are mapped to columns.

(ii) For k < j < n/2—2, 92‘3" is dual to G;j—k' These pairs give n/2 — k — 2
columns that map to stalactites.

(iii) For 0 < j < n/2—k, 0, ; is dual to 01—:;-%' These pairs give n/2 — k — 1
columns that map to stalagmites.

() Forn/2 —k < j <n/2, 0,7 is dual to t‘)k_j'_l. These pairs give k stalagmites
and they are mapped to columns.

(v) All the curves joining dual pairs listed in (i)-(iv) are pairwise disjoint and do
not meet the curve joining the points corresponding to 9,;*",5 and kT—_l,n/2—k+1 or
the one for 9;?1 kg1 and 9,;;/27,9. Thus the stalactites are contained in a triangle

with one vertical side, one given by the curve for 0,’:: and 0, n)/2—kt1 and one
along 0P and the stalagmites are contained in a triangle with one vertical side,
one given by the curve for 9,:1'1’,“1 and 9;;/2_k and one along 0~ P.

(vi) The points listed in (i)-(iv) account for all the points of Fix(a2) in Cif except

++ —— +— +-— —+ -+
0/{:,1@7 9k,n/2—k’ 9/6,/4:’ 0/47,0’ ok,n/Q—k—l’ 916,0’
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which we describe next.

(vii) If 0 < k < n/2—1 then there are dual pairs F)k w0, n/2 py1 and G‘k 0,05 +1 )2k

whose curves cross from Cy to Cx_1 and a pair Gk’k, Hk,o whose curve lies within
Cy. These are three columns and they each map to the same column if k is even
and to the symmetric column if k is odd. If 0 < k < n/2 — 2 then the penultimate
sentence says that the points dual to 9,;;/2_k and 0/;,:/2—13—1 in Cy are 9;j17k+1
and 9;:170 respectively in Cyy1. This accounts for the duality of the points in (vi)
when 0 <k <n/2-2.

(viii) If k = n/2 — 2 then Gk n/2—k—1 = 917572}1 in Cpja—g 15 dual to 9;:1’0 =

ot
n/2-1,0
but there is no point 91?-:_1,1@-1-1 and, instead, 0, o ) =0, 5 5, = =1/4-1/(n+2)

in Cpj2—1 and the column joining them is mapped to the symmetric column;

s dual to its image 6 =1/441/(n+2) by a curve of symmetric points

n/2+1 n/2 1
that is mapped to itself as in Proposition 7.1 (iv). This accounts for the duality of
the points in (vi) when k =n/2 — 2.

(iz) If k =n/2 —1 then, as usual, 02‘; and 0,;3' are dual in C,, o1 while 9,';5 and
0,; Lnj2—k OT€ dual by a column that crosses from Cy 51 to C)o_o and both of
these curves are mapped to the symmetric columns. Again there is no point 9;?

but 9;;/2 e = Gn/2 1148 dual to 9n/2 /2 by a curve through the origin consisting
of fized points, and these are given by 0 =1/4+1/(2(n+ 2)) as in Proposition 7.1
(i4i). This accounts for the duality of the points in (vi) when k =n/2 — 1.

() If k = 0 then the points 92‘}5, 92‘5, 92‘;, 0, & all reduce to the vertex (z,z,2) =
(1,1,1) which does not belong to a curve of ﬁxed points that enters P. Together
with the two points whose duality is given in (vii) this covers all siz points in Cy

listed in (vi).

Proof By Proposition 7.4, the curves in Fix(a?2) through points corresponding to
parameters listed in (i) to (iv), and hence also the images of these curves, do not
cross the edge of any corridor. Thus a point listed here belongs to the same corridor
as its dual and the same is true of their images.

Suppose that k is even. From Proposition 7.2 we recall the image corridors of
the pairs of points in (i)—(iv). For 0 < j < k, H,j;r and 9+. in (i) are both mapped
into Cyj_, while, for k < j <n/2-2, H,j;r and 6 F ) in (11) are both mapped into
Coj—k. Again, for 0 < j <n/2 -k, 0y, and 0 k+] in (iii) are both mapped into

Cr+2j-1, while, for n/2—k < j <n/2, 0, and 9 _, in (iv) are both mapped into

Chr+2;—1- Notice that these image corridors are 02 k, C’4_k, ey Cr_y, Cr_9, not Ck,
but then Ciy2,Cris,...,Cnr—6,Cnr—a and Ck+1vck+3;~~~7Cnfk75acn7k737
not C,_g—1, but then Cp,_41,Cr—k+3,.--,Cpik—3,Cryr—1. Since Co_p = Ci_3

and Cp4r—1 = Cp—j etc, these image corridors are all of the corridors except for
C}, itself, the symmetric corridor C,_;_1 and one adjacent to each of these, namely
Cr_1 and Cp_i_o. In particular, they are all distinct which means that the two
points mapped into each of them must be dual, proving (i)—(iv). If k is odd then,
by Proposition 7.2(v), n is added to the number of the image corridor making it
symmetric to the one just described but not affecting the argument.

(v) The curves joining these dual pairs are mapped, according to the proof of (i)—
(iv), into different corridors so any two are disjoint because otherwise their image
would contain a curve in Fix(a?) crossing the edge of a corridor, which is excluded
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by Proposition 7.4. The curves from 9;:75 and from 0;; oy tO the edge of Cy map
into the corridors Cj, and C,, /5_;_; respectively and so again are disjoint from the
other curves just considered. See Figure 1.

(vi) The set of parameters of points of Fix(a?) in C’,~C is given before Proposition
7.2 as

(057 1<j<n/2-2yU{6;; :1<j<n/2}U{6]7,0,:0<j<n/2}

and these are those listed in (i)—(iv) together with
{055 O mjoir Ok 00 Oy Oko

(vii) Proposition 7.1 (iii) and (iv) showed that 02"}: =k/(2(n — 2)) is dual to
Oy injoki1 = k/(2(n 4+ 2)). The other pair was discussed in Proposition 7.4.

(viii) and (ix) The exceptional cases k = n/2 — 2 and n/2 — 1 were included in
Proposition 7.1 (iv) and (iii) respectively. See Figure 4.

(x) When k = 0, Orn/2—r = Uo.n/2 1 dual to 6 T and Gkn/z el 9()_”/2 L
dual to 0} according to the case k = 1 of (vii), while 92‘; = 9"'; = 9"”0_ =0 ’3' =0
all reduce to (1,1,1). As in [HM] Lemma 2.11, the curve v (z) of Proposition 7.1
(iil) of fixed points through the vertex (1,1,1) of T does not enter P. O

is

Remarks From (i) of Theorem 7.5, the total number of stalactites is given by

2 Z"/z Yk—1) = (5 —1)(5—2), which agrees with the number 2 an 2(7 —k—2)
of columns in (ii) that are mapped to stalactites. Also, from (iv) there, the total

number of stalagmites is 2Zn/ g = 5(5 — 1), which agrees with the number

2 Zn/2 1(“ — k — 1) of columns in (iii) that are mapped to stalagmites.

Notice how the fact in (ii) and (iii) that columns join points whose second suffix
differs by k is illustrated in Figure 1 as is the fact that the stalactites in (i) and
the stalagmites in (iv) are enclosed in the triangles mentioned in (v) bounded
by the vertical lines and the curve joining the points corresponding to 9,‘:2‘ and

0,1 nj2—k41 OF the one for 9k+1 k1 and 0,0, . The notation in (i) and (iv)
indicates that each stalactite or stalagmite connects adjacent points of Fix(a?2)NoP
as seen in Figure 1, but actually the order of their endpoints changes at a place
that depends on k since, for 0 < j < k,
k(n/2—-1)+7j ++ 4 kn/2+7 .k 1
— =0 <O =—5 <= i< |1l- .
n(n — 2) i T Tz 75 n—1

88 SOME CURVES OF PERIOD 2 OR 4 NOT IN P

In this section we determine certain types of period 2 and period 4 curves that
are not in P. For period 2 we study the situation where the action of a,, on such
period two points is given by

(8.1) (z,y,2) — (y,z,2) — (2,9, 2).
Recall that
(x,y, 2)ay, = (v1,v9,v3)
= (—2Un—2(y) + 2Un-1(y),
Un(2*)y — Upn—1(2")(=Un-1(y)x + 2Un(v)),
(82) YUn—1(27) = Un—2(2") (=Un-1(y)z + 2Un(y)))-
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Here z* = v; = —2U,—2(y) + 2U,—1(y). If, as indicated in (8.1), we require v; =y,
then we have y = * = —zU,—2(y) + 2U,—1(y), and we can solve for z = z,(z,y),
where

on(yy) = 4 2Un—2(y) _ y+22yUn—1(y) — 2Un(y)
o Un-1(y) Uni(y) :

Substituting z = z,(x, y) into vs gives
v = Un(27)y — Un—1(2")(=Un-1(y)x + 2Un(y))
= 2(Un(y)? + Un—1(y)* = 29Un(y)Un—1(y))
= x’

where we get the last equality from Lemma 4.1 (vii).
Now substitute z = z,(z,y) into vs and we get

_ [Un(y)2 + Unfl(y)2 = 2yUn(y)Un—1 ()] (y + 22yUn_1(y) — 22Uy (y)) )
v3 = U 1) = zp(z,y).

Here we again use Lemma 4.1 (vii) to give the last equality.

Proposition 8.1. Fizn > 1 and z,y € R. Then we have:

(Z) Let v = (xvya Zn(xvy)) Then va,, = (y’x, Zn(x,y))
(ii) If zp (2, y) = 2n(y, T), then va2 = v.

Proof (i) is proved above and (ii) follows from (i), since (i) shows that

(1‘, Y, Z'ﬂ(‘rv y))a% = (ya €L, Zn(x7 y))an = (y7 xz, Zn(ya z))an
= (@,y,2n(y, 7)) = (z,y, 2n(2,9)). O

Define B,(f)(x, y) to be the numerator of z,(z,y) — z,(y, x):
B = (y+ 2zyUn_1(y) — 2Un(y))Un—1(2) — (¢ + 22yUn_1(2) — yUn(2))Un—1(y)
=yUp—1(z) — 2Un(y)Up-1(2) — 2Un-1(y) + yUn(2)Up—1(y).
Next we study curves of period four where the action of «,, looks like
(83) (l‘, Y, Z) — (7y7 -z, Z) — (7337 Y Z) — (y7 xz, Z) = (’JJ, Y, Z)

We again use (8.2). If this time we require v; to be —y, then z* = —y =
—2U,—2(y) + 2Un—1(y), and we can solve for z = Z,(z,y), where

—y+aUna(y) _ —y+22yUn1(y) — 2Un(y)
Unfl(y) Unfl(y) .

Substituting z = Z,(z, y) into vy gives
vg = Un(2")y = Un—1(2")(=Un-1(y) + 2Un(y))
= —2(Un(y)” + Un-1()* = 29Un(y)Un-1(y))

= —x,

Zn(xv y) =

where we get the last equality from Lemma 4.1 (vii).
Similarly, substituting z = Z,,(z,y) into vs one finds that v3 = z = Z,(z,y).
Thus (z,y, 2)a, = (—y, —x, 2) if z,y, z satisfy —aU,—2(y) + 2Un-1(y) = —y.
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Repeating the above we start with the expression (—y, —z, z) and apply a,:
(—y,—x, 2)a, = (v1,v9,v3)
= (yUn—2(2) — 2Up—1(2),
Un(2*)(=2) = Un—1(2")(=Un-1(2)y + 2Un(x)),
—2Un1(27) = Un—2(z") (=Un-1(2)y + 2Un(2))).
Here z* = v1 = yU,—2(x) — 2U,—1(x). If we put v; = —=z, as dictated by (8.3),

then as in the above we find that (v1,vs,v3) = (—x, —y, 2).
Repeating the above two more times (with no additional hypotheses) gives:

Theorem 8.2. Let n be even and let x,y,z € R satisfy
_‘TUn72(y) + ZUnfl(y) + Y= 0 and yUn72(x) - ZUnfl(x) +2=0.
Then (x,y, z) is a point of period 4 for a,, with the action given by (8.3). O

Now solving the first equation in the above result for z, and substituting into
the second gives a function whose numerator is

3124)(737 y) = xUn—l(y) - yUn—Q(x)Un—l(y) - yUn—l(x) + xUn—Q(y)Un—l(x)-

It is easy to see that BY (x,y) is the numerator of Z,(x,y) — Z,(—y, —x), similar
to the period two case. In fact B£L4)(—J;, y) = BT(?)(x,y). We draw both curves in
Figure 5 for n = 12 where the period 2 curve crosses the diagonal x = y in the first
rectangle of the first quadrant.

Since B£L4)(—x, y) = By(bz)(m, y) the duality for points of period 4 given by (8.3)
will then follow from Theorem 8.13 which gives a description of the duality for
points of period 2 as determined by the rule (8.1). In order to study duality for
such period 2 points we first find where these curves of period 2 meet 97 .

Lemma 8.3. For alln > 1 and all x,y € R we have

(m _ Un+21(y) + U'rL*Ql(y)) T — U—n—l(y) + U",g(y))
N-1=

B 2 2
_@-Tn@)z-T1(y))
Uvnfl(y)2 '
Proof Substituting for z,(x,y) shows that the two sides of the first equality are
equal. The second equality follows from the fact that T, = % ([l

Now the points of interest are on the curve E(z,y, z,(x,y)) = 1 and also satisfy

Bﬁf)(ag, y) = 0. From Lemma 8.3 we see that E(z,y, z,(x,y)) = 1 determines two
cases:

(i) 2 = Th11(y); and (i) = = T,,—1(y).
Thus to determine the points where these curves of period 2 meet 07 we solve

B2 (T (4), ) = 0.
Proposition 8.4. (i) For all n,m > 1 we have:

n/2
Un(Trn(2)) = 2)_ Tin—2iym ().
k=0
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FIGURE 5. Diagonals, fundamental rectangles and curves of period
2 and 4 points for ay2 projected onto the xy-plane.

(i) For all n > 1 we have:
1

B£L2)(Tn+1(y)7y) = i(U(n+1)273<y) - Un272(y> - U2n(y) + 1)
The roots of B£L2)(Tn+1(y), y) are y = cos 278, where
k k k
0_n2+2n’ 0_n2—2’ 9_%’

for any k € Z.
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(it3) B’(LZ)(T”—l(y)’ y) = %(UHQ—Z(?J) —Up2_on_2(y) —Usp—2(y) — 1). The roots of
B@(T_1(y),y) are y = cos 210, where

k k k
0=—-— 0= —— 0=—
n? —2n’ n? —2’ 2n’
forany k € Z.

Proof One proves (i), and then for each of (ii), (iii) one proves the first statement
using (i), and then uses this to find the roots. The details are left to the reader. O

Proposition 8.5. The places where the period two points (x,y, zn(x,y)) meet OT
are when
(i) x = cos2m(n + 1)0,y = cos 2w, with 0 as given in Proposition 8.4 (ii); and
(i) x = cos2m(n — 1),y = cos 2wl with 0 as given in Proposition 8.4 (iii). O

Now the denominator of z,(z,y) — zn(y, x) is Up—1(2)Up—_1(y) and U,,_1(z) has
roots & = cos %j,j € Z \ nZ. We will thus split the square [—1,1]? into rectangles
bounded by the lines x = cos %j, Y = COS %k; these (closed) rectangles we will call
fundamental rectangles. Each such fundamental rectangle has four corners. Some
of the fundamental rectangles meet the boundary of [—1,1]%; we will call these
boundary rectangles. A corner ¢ = (z,y) will be called a diagonal corner if x = +y.

Let AT denote the diagonal x = y, let A~ denote the diagonal x = —y and let
AT = AYUA~. A diagonal rectangle is a rectangle (square) one of whose diagonals
is in A%,

We split the square [—1,1]2 into four triangles determined by the two diagonals
in [~1,1]%. These are naturally called the bottom, left, top and right triangles.

Let B3, be the set of points (x,y, z,(7,y)) € R? having period 2 for a,,, where
By(f)(x,y) =0. Let

Toy t RY = R2 (2,9,2) = (2,9),
be the projection onto the zy-plane. If R is a fundamental rectangle, then we will
denote the set W;;(R) N Br by Bn,r. Then 7,y (Bn r) is a curve in R.

Proposition 8.6. (i) FEach non-boundary, non-diagonal corner of each fundamen-
tal rectangle is a point of B, .

(ii) If R is a non-boundary fundamental rectangle, then the only places where (3,
meets OR are at the corners of R.

(#ii) Suppose that a part of the curve B, is in a fundamental rectangle R and
exits R at a (non-boundary, non-diagonal) corner ¢ of R. Assume that ¢ = (2o, Yo).
Then the rectangle that the curve 3, enters (after passing through c) is the rectangle
opposite R relative to c.

Proof (i) Such a corner of a fundamental rectangle has the form (g, yo) = (cos =L, cos =),

Jke{l,...,n—1}, so that U,_1(xg) = Up—1(yo) = 0. Thus !
B (x0,50) = yoUn—1(20)—20Un (40)Un—1(20) —20Un—1(0)+50Un (20)Un—1(y0) = 0.

(ii) Suppose that (zo,y0) € OR where Bv(f)(xo,yo) = 0. Since Bgz)(x,y) =
—B,(f)(y,w) we can assume that yo = cos 7%“,k: e{l,...,n—1}, and so

B'I(LZ) (an yO) = yOUn—l('IO) - xOUn(yO)Un—l(xO) - xOUn—l(yO) + yOUn(xO)Un—l(yO)
= Un—1(0) - (¥o — woUn(¥0))-
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Now let 0 = %’“,k e {1,...,n— 1}, so that yo = cosf. Then

sin(n +1)0  sinnf cosf + cos nd sin 6
Un(yo) = (sinﬁ ) _ - = cosnf = cos(km).

Thus we have U, (yo) = £1, and if we have

0 =B (z0,50) = Un—1(x0) - (o — 20Un(%0)),

then we either have (a) Up_1(z9) = 0, or (b) yo = zo, or (¢) yo = —xo. In each
case we see that xy = cos %, he{l,...,n— 1}, as required.

(iii) This result will follow if we can show that the tangent to f3,, at the corner ¢
is neither horizontal nor vertical. The relevant slope is obtained by differentiating

BT(LQ)(x, y) w.r.t. « and solving for y' = d%y(x) at the point ¢ = (z, yo). Hence:
, d d d
Y [Un—l(x) - xUn—l(x)CTyUn(y) - xdiyUn—l(y) + Un(2)Un-1(y) + yUn(f)IyUn—l(y)]

= U 1(2) + Un()Un1(2) + 20 0) 5-Un 10 + Un 1 (5) = 40U 1(0) 5-Unl0).

Using the fact that U,_1(cos %J) = 0 and the expression for the derivative of
Un—1(z) from Lemma 4.2 we obtain:

s Un(@o) - (Un(yo)wo — o) - (y3 — 1)
Un(yo) - (Un(z0)yo — 20) - (25 — 1)
Since g = cos 7TWj,yo = cos 7% one has U, (x0),Un(yo) € {£1} and T, (z¢) =

n
Un(20), Tn(yo) = Un(yo). Since the corner is a non-diagonal corner that is not
on the boundary it follows that the numerator and the denominator of the above

expression cannot be zero. The result follows. O

As can be seen from Figure 5 (where n = 12) it is possible that (5, exits a
boundary rectangle at a non-corner point.

Let R be a fundamental rectangle. From Proposition 8.5 the points (x,y) of
Bn,r N OT have the form

2(n+ 1)mm 2mm n? 4+ 2n
(7) x:cos%, y:COSnQ—i—Qn’ 0<m< er ;
3 2(n — 1)mm 2mm n? —2n
(i4) T=cos— 5 —, Y=cos o, 0<m< 5

2

(#i7) 1':(1082(7:;_#7 Yy = COs 22m7r2’ 0<m< n 2_2;
) 2(n — )mm 2mm n?—2
(iv) xzcosw, yzcosm, 0<m< 5

In Figure 6 we show the points of types (i)-(iv), drawn as crosses, diamonds,
circles and asterisks, respectively, for n = 12. Compare Figure 6 with Figure 5.

We show that each non-diagonal rectangle R has exactly two points of 8, rNOT;
these are either of types (i) and (iv), or of types (ii) and (iii). These will then be
dual.

We introduce notation for the fundamental rectangles: note that the square
[—1,1]? is a union of n? fundamental rectangles. Each such rectangle R has a lower
left corner with coordinates(cos £, cos 2¢). We will call R the (p, q)-rectangle. Thus

n



CURVES OF PERIOD TWO POINTS FOR TRACE MAPS

A% £ 10 * © * o * ik
EZIS} 1
* + Q
% s % j( +
o + N
T o + o
+ D *
Q % o
Ho * <
O n o N
> g +
o B o+ &
< * o H
o) it E3
+ le} + Ok
4+ O q
®+o o K
+ o * ©
* ¢
I
* © ¢} +
) O+
*O 1 N a
* o
o
T LS Ow +
i Lo st © 0 A os & *
&} Ox
+0 N
o — o *
+ o *
A] o 4
e © or
*x < . 6]
© b o
*O Ol +
& Q o
D 0 * © *
+0 1 ©
+ @) 4
o X By
* Gt
o
. ° * N B
o 4 o +
o + o
*
+0 T be) *
+ o 3 8 |k s
P * & o) % [SHES

FIGURE 6. Points of type (i)-(iv) for aqs.

the (1,1) rectangle is the top right rectangle of [~1,1]? and the (n, n)-rectangle is

the bottom left rectangle of [—1,1]2. We also note that the (p, ¢)-rectangle is also

the (£p + 2un, +q + 2vn)-rectangle for any u,v € Z. Let R° be the interior of R.
Let P, denote the set of points of type a, a € {(), (i7), (iii), (iv)}.

Lemma 8.7. Let R be the (p, q)-rectangle.

(i) Suppose that (z,y) € R° N Py where x = cos %, Yy = cos n%_ﬁ’;ﬂ Then
qg= [f—fﬂ and p = (%Zigk] No two points of Py can be in R° N P).

27
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(i) Suppose that (x,y) € RN P;) where x = cos %, y = cos 27— Then

q= f%] and p = fzgz ;g 1. No two points of Py can be in R° N Pyy).

(iii) Suppose that (x,y) € RN Py where x = cos %, 1y = Cos 2}”2. Then
2(n+1)k

q= [%W and p = [(n—z/n)] No two points of P;;;y can be in R°.

(iv) Suppose that (x,y) € RN Py, where x = cos 2 DkT ) — cos 2 Then

n2—2

q= [nfg/n'\ and p = fZT(L" 2}231 No two points of Py can be in R°.
Proof (i) We have
cos I < co T <c0s(q_ )
n n? 4+ 2n n
This gives
(¢g— D) 2km qm 2k
< — and -l1<—=x
n n2+2n<nan S0 d nt2 9

which gives ¢ = fn+2] One similarly shows that p = fQEZigk]

Now if (z;,y;) € R° N Py, j = 1,2, where z; = cos %,yj = cos %,

2(n+1)k 2(n+1)k

then we would have [ 2 12) L] =] ((n++2)) 2] +2un and [(3112)1 = :I:f(figﬂ +2vn
for some u,v € Z. ThlS proves (i).

Cases (ii), (iii), (iv) are similar. O

Now note that if k = r(n 4+ 2)/2,r € Z, then

2k 2 1k
Yy = cos 712_'_7”% = cos %T, x = cos % = (—1)"cos %T =(-1)"y.

2(n+1)kﬂ' _ (71)ry

Thus this point is a diagonal corner point. Similarly z = cos =3 Ton

when k = rn/2.

Number the corners of A™ as 0,1,2,... starting at the level y = 1. Number the
corners of A~ as 0,1,2,... starting at the level y = 1. Let (¢) denote the point of
type (i) with parameter k: This gives part of

Proposition 8.8. (i) Type (i) points (z,y) © = cos %,y cos nf_’fgn

A* if and only if k = ooork = @ The even numbered corners of AT are

points of type (i), as are the odd numbered points of A~. These corners of type (i)
are where k = r(n + 2)/2.
2(n—1)km 2km

(ii) Type (ii) points (x,y) & = cos = 5=,y = COS —F~5— are in A* if and only

ifk="5 ork= 7"(" 2. When k = T("Q 2 the type (ii) po(mt z)s a corner diagonal
r(n+2
LA

are in

point and s also a pomt of type (i) corresponding to k =
(iii) There are no type (iii), (iv) points on the diagonals.
(iv) For 0 < r < n/2 the points

(i)r(n+2)/27 (ii)rn/% (“7')7’71/27 (iv)r(n+2)/2

are all in the same diagonal rectangle. This diagonal rectangle meets AT if and
only if r is even.

Proof The proofs are straightforward; for example for (iv) we show that the z-
values for (),(n42)/2 and (7i),, o differ by the correct amount: recalling that the
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(4)r(n+2)/2 Point is a corner and that 0 < r < n/2 — 1 we have:

2(n+1)r(n+2)/2  2(n—1)m/2| (—-1)r (n+1L)r  2r <2(n/2—1)_l O
n? 4 2n w2 =2n | n-2 n  nan-2)" nn-2) n

This shows that the diagonals have alternately squares with 1 (interior) point
(of type (i)) and 3 points, where the common corner point is of type (i) and (ii).

Let p denote rotation of R? by 7 about the origin. Let r,,r_ denote the re-
flections across AT and A, respectively. So r_r, = p. The group {ry,r_) acts
transitively on the four triangles of [—1,1]?. Thus by the next result we need only
consider one of these triangles (the bottom triangle).

Proposition 8.9. (i) p(P,) = P, for all « € {(i), (i), (4i7), (iv) }.
(ZZ) Ty (P(Z-)) = P(Z-) and r_ (P(i)) = P(i)-
(ii1) 7“+(P(n‘)) = Pl and T—(P(n‘)) = Pl
(iv) 74 (Pisiy) = Plivy> 7+ (Pv)) = Pliiay, "= (Pais)) = Plivys 7= (Piv)) = Plii)-

Proof (i) If (x,y) € P, then (z,y) = (cos 2t DR oo —2E1_)  Then

n2+42n n2+42n
2(n+ 1)kr 2k
p(@,y) = (—z,—y) = <_ cos T2 ron —Cos nZ Tt 2n>
2(n+ 1)k 2km
= <COS(nQ+2n + ), COS(n2 om + 7r)>
2An+1)(k+2520)r 2k + 22
= | cos , COS € Py).
n? +2n n? +2n

Here we used the fact that n is even to conclude that k + "2%2” SYA
Similarly one shows that p(P)) = Py, p(Puiiy)) = Piiy and p(Pyy)) = P
(ii) Let (z,y) = (cos 2(52112)5”,(308 n?ign) € Py). Then ri(z,y) = (y,z) and so
we need to find some m € Z such that
2km 2(n+ 1)kn 2(n+ )ymmx 2mm
(y,x) = <cos n2+2n’COS - ) = (cos S Sn2+2n> € P).
This is equivalent to solving the rational congruences
2m(n +1 2k 2m 2k(n+1
n2(+ 2n) =2 +2n mod 2; and n2 +2n = n§ —|—2n)
This is equivalent to solving the integral congruences

m(n+1)=k mod n?+2n; and m = k(n+1) mod n? 4 2n.

mod 2.

Since (n+1)?2 =1 mod n?+2n one easily sees that any m solving the first of these
equations will automatically solve the other. Now we can solve the first equation
since ged(n + 1,n% +2n) = 1. This does this case and 7_(P(;)) = Py; follows from
the fact that r_ = pry, together with what we have done above.

(iii) The proof of (iii) is similar to the proof of (ii).

(iv) We will prove the first of these as the rest are similar or follow easily. So
let (z,y) € Py, so that (z,y) = (cos Anpllkm g 2bm ) . Then we need to find

n2—2 n2—2
m € Z such that

2km 2(n+ 1)k 2(n — 1)mm 2mm
= | cos ) .
n? —2 n? —2

re(z,y) = (y,z) = <cos 5 S 5o cos
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As in the above this amounts to solving the integral congruences
m(n—1)=k modn?—2; and m=k(n+1) modn?—2.

Now (n—1)(n+1) =1 mod n?—2 and (as in the above), we see that solving one of
these equations is equivalent to solving both of them. Since ged(n — 1,n? —2) =1
we see that there is a solution to the first equation. O

Let C,, denote the set of corner points of type (i) of diagonal rectangles as de-
scribed in Proposition 8.8.

Let T be the part of [—1,1]? that lies between y = cos %’r, Yy = cos w and
the diagonals. Thus Ty is a trapezoid and from Proposition 8.8 one sees that two
of its (opposite) corners are in C,,.

Assume without loss of generality that Ty is in the bottom triangle, and that
the corners of T that are in C,, are the bottom left and the top right corners of
%k. Note that by the symmetry in = there are an even number of rectangles that
are completely contained in ¥j. Denote them by R;,..., Rop, ordered from left to
right. Here h=k —n/2 — 1.

Now the bottom left corner of ¥j has coordinates (cos %",cos %’T) Since it is

i 1 i 3 3 . (nt1)2mn 2mm
a point of C, it will also have coordinates (cos “~ Lon 1 COS T30,

r(n+ 2)/2. Then we have £ = (”:21_23::” = ("t})ﬂ mod 27

), where m =

Lemma 8.10. The rectangles Ry, Rs, ..., Rop_1 are the only rectangles R; to have
points of type (i) in them and each such rectangle has exactly one type (i) point.

Proof The points of type (i) (z = cos %, Y = COS n%’ign), that are in T are
(z = cos W,y = cos %), k' € Z,i > 0. Thus they have the form
kr 2(n+ 1)in km 2im
(r;=cos| ————"— ) ,yi=cos | — — ——— ).
n n2 + 2n n  n?+2n

Since n > 4 we get
(k—2)m - kr 2(n+1m  (k—D)m

)

n n n? 4+ 2n n

and so we see that (z1,y1) € R1. If n =4, then this is all we need to show.
If n > 4, then since
(k—4) kr 4n+ 1w (k—3)7

™
< — — <
n n n? +2n n

we see that (z2,y2) € Rs.
Similarly, if n > 6, then since

(k—6)r - km 6(n+ Dm - (k=5

)

n n n? 4+ 2n n
we see that (z3,y3) € Rs. Continuing inductively shows that Ry, Rs,..., Rop—1
each have at least one of these points in them.

Now we count the number of such rectangles in the bottom triangle that have
such a point in them. This is
n n

(G-D+(G -2+ +2+1=(5 -1

There are four such triangles, containing a total of # such points.
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From Proposition 8.8 we see that there are 2n+1 type (i) points on the diagonals,
giving a total of (n? 4+ 2n)/2 + 1 such points. This is exactly the number of points
of type (i). Lemma 8.10 follows. O

We immediately obtain:

Proposition 8.11. (a) The rectangles in the bottom triangle that contain points of
type (i) (in their interiors) are the (p, q)-rectangles where p is odd and n—q+1 <
p<q.

The points of type (i) in the bottom triangle that are on AT include the top
right corners of the (p,p)-rectangles where n/2 < p < n is odd; each such rectangle
contains one other point of type (i) in its interior. This accounts for the points of
type (i) that are on AT,

In the bottom triangle the top left corners of the (p,n + 1 — p)-rectangles where
0 <p<n/2is odd, are points of type (i) and these rectangles also contain a point
of type (i) in their interior. This accounts for the points of type (i) on A~. O

In a similar way we prove:

Proposition 8.12. (b) The rectangles inside the bottom triangle that contain points
of type (it) (in their interiors) are the (p,q)-rectangles where n —q+2 <p < q—1
and p is even.

(¢) The rectangles inside the bottom triangle that contain points of type (i) (in
their interiors) are the (p,q)-rectangles where n —q+1 < p < q and p is even.

(d) The rectangles inside the bottom triangle that contain points of type (iv) (in
their interiors) are the (p,q)-rectangles where n —q+1 < p < q and p is odd.

There are no points of type (iii) or (i) on AT.

The diagonal rectangles have (alternately) either no type (iii) or (iv) points in
them or one type (iii) point and one type (iv) point in them. The (n/2,n/2 + 1)-
rectangle contains a type (i1i) and a (iv) point. O

Thus the following completely describes the duality for points in the bottom
triangle, and so by symmetry for all points. Compare Figures 5 and 6. Also,
duality for points on A* was done before §8.

Theorem 8.13. (Bi) Each point of type (i) in the bottom triangle is dual to the
unique point of type (iv) that is in the same rectangle. These rectangles are the
(p, q)-rectangles in the bottom triangle where p is odd. Fvery such rectangle (inside
the bottom triangle) has one type (i) point and one type (iv) point. This gives the
duality for any type (i) or (iv) point in the bottom rectangle.

(Bii) Each point of type (ii) in the bottom triangle is dual to the unique point
of type (iit) that is in the same rectangle. These rectangles are the (p, q)-rectangles
in the bottom triangle where p is even. Every such rectangle has one type (4) point
and one type (i) point. These are dual points if the points are in the interior of
the rectangle.

If one of these points is not in the interior of the rectangle, then the top right
[or top left] corner is on A~ [or AT] and is of type (ii). The type (iii) point in
the interior of this rectangle is then dual to the point of type (iv) which is in the
reflection of this rectangle across A~ [or AY]. This gives the duality for any type
(i) or (iii) point in the bottom rectangle.

The squares above a rectangle having a type (ii) point in their top right [or top
left] corner have a point of type (iii) in them. These squares are invariant under
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r_ [or ry] and the image of the type (iii) point is a type (iv) point; these are dual
points. ([
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